Math, asked by Stera, 6 months ago

Differentiate the following :
 \sf (i) \:  \:   {x}^{ x }  +  2^{\sin x}  \\ \\  \sf (ii)  {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }  \:  \: using \: parametric \: form

Answers

Answered by Anonymous
94

Solution:–

1)

let \: y =  {x}^{x}  -  {2}^{sinx}

also \: let \:  {x}^{x}  = u \: and \:  {2}^{sinx}  = v

 \therefore \: y = u - v

 \implies \:  \frac{dy}{dx}  =  \frac{du}{dx}  -  \frac{dv}{dx}

u =  {x}^{x}

Talking logarithm on both sides

 log(u)  = x log(x)

Differentiating both sides with respect to x

 \frac{1}{u} . \frac{du}{dx}  = ( \frac{d}{dx} (x) \times  log(x)  + x \times  \frac{d}{dx}  \times  log(x) )

 \implies \frac{du}{dx}  = u(1 \times  log(x)  + x \times  \frac{1}{x} )

 \implies \:  \frac{du}{dx}   =  {x}^{ x} (1 +  log(x) )

v =  {2}^{sinx}

Taking logarithm on both sides with respect to x

differentiating,

 \frac{1}{v} . \frac{dv}{dx}  =  log(2) . \frac{d}{dx} ( \sin(x) )

 \implies \:  \frac{dv}{dx}  = v log(2)  \cos(x)

 \implies \:  \frac{dv}{dx}  =  {2}^{sinx}  \cos(x)  log(2)

 \therefore \:  \frac{dy}{dx}  =  {x}^{x} (1 +  log(x)  -  {2}^{sinx} cosxlog2

2)

 {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  =  {a}^{ \frac{2}{3} }

differentiating w.r.t.x

 \frac{2}{3} . {x}^{ \frac{2}{3} - 1 }  +  \frac{2}{3} . {y}^{ \frac{2}{3} - 1 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{dy}{dx}  = 0(because \: a \: is \: constant)

now,

 \frac{2}{3}  {x}^{ \frac{ - 1}{3} }  +  \frac{2}{ {3y}^{ -  \frac{1}{3} } }  \:  \:  \:  \:  \:  \:  \:  \frac{dy}{dx}  = 0

 \frac{dy}{dx}  =  -  {( \frac{x}{y}) }^{ \frac{ - 1}{3} }


BrainIyMSDhoni: Good :(
Anonymous: Nice
Answered by BrainlyTornado
142

ANSWER 1:

x^x (1+log x) +2^{sin x}cos x \:  log 2

FORMULAE USED:

 \log  {x}^{y}  = y \log x

 \dfrac{d}{dx} (log \: x) =  \dfrac{1}{x}

 \dfrac{d}{dx}(x) = 1

 \dfrac{d}{dx} ( \sin x) =  \cos x

  \dfrac{d}{dx} (constant) = 0

EXPLANATION:

REFER ATTACHMENT FOR EXPLANATION.

ANSWER 2:

  \dfrac{ dy}{dx}  =  - \sqrt[3]{ \dfrac{y}{x} }

EXPLANATION:

Here powers are given as 2/3 so we consider

x = a sin³ θ and y = a cos³ θ

This will help as eliminate the cube root ie power(1/3)

 {(a \sin^{3}  \theta)}^{ \frac{2}{3} }  + {(a \cos^{3}  \theta)}^{ \frac{2}{3} }

a^{2/3} \sin^2\theta+a^{2/3} \cos^2\theta

a^{2/3} (\sin^2\theta+ \cos^2\theta) = a^{2/3}

 \dfrac{dy}{dx}  =  \frac{ \dfrac{dy}{d \theta} }{ \dfrac{dx}{d \theta} }

 \dfrac{dy}{ d \theta}  = a(3 { \cos}^{2}  \theta) -  \sin \theta

  \dfrac{dy}{d \theta}  =  -3 a \sin \theta  { \cos}^{2}  \theta

\dfrac{dx}{d \theta} = a(3 { \sin}^{2}  \theta) \cos \theta

\dfrac{dx}{d \theta}  = 3a{ \sin}^{2}  \theta \cos \theta

  \dfrac{ dy}{dx}  =  \dfrac{-3 a \sin \theta  { \cos}^{2}  \theta}{3a{ \sin}^{2}  \theta \cos \theta}

  \dfrac{ dy}{dx}  =  -  \dfrac{ \cos \theta}{ \sin \theta}

 \cos \theta =  {y}^{ \frac{1}{3} }

 \sin \theta =  {x}^{ \frac{1}{3} }

  \dfrac{ dy}{dx}  =  -  \bigg( { \dfrac{y}{x}\bigg) }^{ \frac{1}{3} }

  \dfrac{ dy}{dx}  =  -   \sqrt[3]{ \dfrac{y}{x} }

Attachments:

BrainIyMSDhoni: Great :)
Anonymous: Awesome
Similar questions