Math, asked by harshit956, 9 months ago

Differentiate the following w.r.t. x:

Attachments:

Answers

Answered by BrainlyPopularman
5

{ \bold{ \boxed{ \boxed{ \mathfrak{  \huge\red{ \bigstar \: answer \:  \bigstar}}}}}}

 { \bold{ \underline{ Given \:  \: function}  :  - }} \\  \\ { \bold { \orange{ \implies \:   {e}^{x}  +  {e}^{ {x}^{2} } +  {e}^{ {x}^{3} }  +  {e}^{ {x}^{4} } +  {e}^{ {x}^{5} }   }}}

{ \bold { \underline{To  \:  \: find} :  - }} \\  \\{ \bold{ \orange{ { DIFFERENTIATION }}}} \\  \\ { \bold{  \boxed{ \boxed{\green{ \mathtt{ \huge{ \bigstar \: solution \bigstar}}}}}}}

{ \bold{ \orange{y =  {e}^{x} +  {e}^{ {x}^{2}  } +  {e}^{ {x}^{3} }  +  {e}^{ {x}^{4} }  +  {e}^{ {x}^{5} }   }}} \\  \\ { \bold{ \orange{ \frac{dy}{dx} =  {e}^{x}  +  {e}^{ {x}^{2} }(2x) +  {e}^{ {x}^{ 3} }  (3 {x}^{2} ) +  {e}^{ {x}^{4} } (4 {x}^{3}  ) +  {e}^{ {x}^{5} } (5 {x}^{4} )}}} \\  \\ { \bold{ \orange{ \frac{dy}{dx} =  {e}^{x}  + 2x {e}^{ {x}^{2} }   + 3 {x}^{2} {e}^{ {x}^{3} }   + 4 {x}^{3}  {e}^{ {x}^{4} } + 5 {x}^{4}   {e}^{ {x}^{5} } }}}

{ \bold{ \red{ \underline{used \:  \: formula} : -  }  }} \\  \\ { \bold{ \blue{ \:  \:  \:  \: \:  \:  \:  .  \: \:  \frac{d( {x}^{n} )}{dx}  = n {x}^{n - 1} }}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \: . \:  \:  \frac{d( {e}^{x}) }{dx}  =  {e}^{x} }}}

{ \bold{ \red{ \boxed{ \huge{ \mathfrak{hope \:  \: you \:  \: like \:  \: it...}}}}}}

Similar questions