Math, asked by Anonymous, 9 months ago

Differentiate the following w.r.t x if x € (0,1).
 \sf y =  {sin}^{ - 1} (x \sqrt{1 - x} -  \sqrt{x} \sqrt{1 -  {x}^{2} }   )

Answers

Answered by Anonymous
3

Answer in the attachment....

Hope it helps you ✌️

Attachments:
Answered by EnchantedGirl
48

GIVEN:-  \sf y = {sin}^{ - 1} (x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - {x}^{2} } ) & x € (0,1).

__________________________________________________

TO FIND :- Differentiation of the following wrt x.

____________________________________________________

SOLUTION :-

 =  > y =  \sin {}^{ - 1} (x \sqrt{1 - x}  \:  -  \sqrt{x}  \sqrt{1 - x {}^{2} } )

 =  > y =  \sin {}^{ - 1} (x \sqrt{1 - ( \sqrt{x} ) {}^{2} }   -  \sqrt{x}  \sqrt{1 - x {}^{2} } )

 ✪ \boxed{ \sin {}^{ - 1} ( a ) -  \sin {}^{ - 1} (b)   =  \sin {}^{ - 1} (a \sqrt{1 - b {}^{2}  } - b \sqrt{1 - a {}^{2} }  ) }

 =  >  \: y =  \sin {}^{ - 1} (x)  -  \sin {}^{ - 1} ( \sqrt{x} )

 =  >  \:  \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 - x {}^{2} } }  -  \frac{1}{ \sqrt{1 -  ( \sqrt{x} ) {}^{2}  } }

 =  >  \frac{1}{ \sqrt{1 - x {}^{2} } }  -  \frac{1}{ \sqrt{1 - x} } ( \frac{1}{2 \sqrt{x} } )

 =  >  \frac{1}{ \sqrt{1 - x {}^{2} } }  -  \frac{1}{2 \sqrt{x}  \sqrt{1 - x} }  \:

Hence, the Answer is,

 =  > \boxed{ \frac{1}{ \sqrt{1 - x {}^{2} }  }  -  \frac{1}{2 \sqrt{x} \sqrt{1 - x}  } }

______________________________________________________

HOPE IT HELPS :)

Similar questions