Math, asked by rhea99, 11 months ago

differentiate the following w.r.t.x sec[tan (x^4+4)]

help me out guyz plz​

Answers

Answered by Rohit18Bhadauria
27

Given:

A function-

\bf{sec(tan(x^{4}+4))}

To Find:

  • Differentiation of given function w.r.t. to x

Solution:

We know that,

\leadsto\bf{\dfrac{d}{dx}(sec\:x)=sec\:x\:tan\:x}

\leadsto\bf{\dfrac{d}{dx}(tan\:x)=sec^{2}x}

\leadsto\bf{\dfrac{d}{dx}(x^{n})=nx^{n-1}}

\leadsto\bf{\dfrac{d}{dx}(constant)=0}

Now,

On differentiating given function w.r.t. x, we get

\sf{\dfrac{d}{dx}(sec(tan(x^{4}+4)))}

\sf{sec(tan(x^{4}+4))tan(tan(x^{4}+4))\dfrac{d}{dx}(tan(x^{4}+4))}

\sf{sec(tan(x^{4}+4))tan(tan(x^{4}+4))sec^{2}(x^{4}+4)\dfrac{d}{dx}(x^{4}+4)}

\sf{sec(tan(x^{4}+4))tan(tan(x^{4}+4))sec^{2}(x^{4}+4)(4x^{3}+0)}

\sf\pink{sec(tan(x^{4}+4))tan(tan(x^{4}+4))sec^{2}(x^{4}+4).4x^{3}}

Answered by sandy1816
1

y = sec(tan ( {x}^{4}   + 4)) \\  \\  \frac{dy}{dx}  = sec(tan ( {x}^{4}  + 4) )tan(tan ( {x}^{4}   + 4)) \frac{d}{dx} tan ( {x}^{4}  + 4)  \\  \\  \frac{dy}{dx}  = sec(tan ( {x}^{4}  + 4))tan(tan ( {x}^{4}   + 4)) {sec}^{2}  ( {x}^{4}   + 4) \frac{d}{dx}  ( {x}^{4} + 4)  \\  \\  \frac{dy}{dx}  = sec(tan ( {x}^{4}  + 4))tan(tan ( {x}^{4}  + 4) ) {sec}^{2}  ( {x}^{4}   + 4)4 {x}^{3}

Similar questions