Differentiate the following. w.r.t. X :................tan^-1( SEC X+TAN X)
Answers
Answered by
4
Let us assume that
U=secx + tanx
X=tan^-1(u)
As we know that,
Tan^-1x=1/1+x^2
Apply the value of u in the x term
=1/1+(sec x +tan x)^2
=1/1+(sec^2x+tan^2x+2 secx tanx)
=1/1+(1+2sec x tan x)
=1/2+2sec x tan x)....
Please check the answer...
Hope this helps you....
Please mark it as brainliest answer....
U=secx + tanx
X=tan^-1(u)
As we know that,
Tan^-1x=1/1+x^2
Apply the value of u in the x term
=1/1+(sec x +tan x)^2
=1/1+(sec^2x+tan^2x+2 secx tanx)
=1/1+(1+2sec x tan x)
=1/2+2sec x tan x)....
Please check the answer...
Hope this helps you....
Please mark it as brainliest answer....
abhi178:
dear saka again check
Answered by
12
y =tan^-(secx + tanx)
differentiate wrt x
dy/dx = 1/{ 1+( secx+tanx)² } { secx.tanx+sec²x}
= 1/( 1+ tan²x + sec² + 2secx.tanx} { secx(tanx + secx )}
=1/(2sec²x + 2secx.tanx } { secx( secx+tanx)}
=secx(secx +tanx)/2secx( secx +tanx)
=1/2
differentiate wrt x
dy/dx = 1/{ 1+( secx+tanx)² } { secx.tanx+sec²x}
= 1/( 1+ tan²x + sec² + 2secx.tanx} { secx(tanx + secx )}
=1/(2sec²x + 2secx.tanx } { secx( secx+tanx)}
=secx(secx +tanx)/2secx( secx +tanx)
=1/2
Similar questions