Math, asked by Anonymous, 10 months ago

Differentiate the following w.r.t.x.
y =  \sqrt{ \sin \:  {x}^{3}  }

Answers

Answered by GRANDxSAMARTH
12

Answer:-

y =  \sqrt{ \sin \:  {x}^{3}  }

*Differentiate w.r.t.x

 \frac{dy}{dx}  =  \frac{d}{dx} ( \sqrt{ \sin \:  {x}^{3}  } )

 \:  \:  \:  =  \frac{1}{ 2 \sqrt{ \sin \:  {x}^{3}  }  }  \times  \frac{d}{dx}( \sin {x}^{3} ) \\

 \:  \:  \:  =  \frac{1}{2 \sqrt{ \sin \:  {x}^{3}  } }   \times  \cos {x}^{3}   \times  \frac{d}{dx} ( {x}^{3} ) \\

 \:  \:  =  \frac{1}{2 \sqrt{ \sin \:  {x}^{3}  } }  \times  \cos {x}^{3}   \times (3 {x}^{2} ) \\

 \frac{dy}{dx}  =  \frac{3 {x}^{2}  \cos {x}^{3} }{2 \sqrt{ \sin {x}^{3}  } }  \\

#This is your correct answer.

Answered by sanchitachauhan241
2

ANSWER :-

Answer:-

y = \sqrt{ \sin \: {x}^{3} }

*Differentiate w.r.t.x

\frac{dy}{dx}= \frac{d}{dx} ( \sqrt{ \sin \: {x}^{3} }

$$\begin{lgathered}\: \: \: = \frac{1}{ 2 \sqrt{ \sin \: {x}^{3} } } \times \frac{d}{dx}( \sin {x}^{3} ) \\\end{lgathered}$$

$$\begin{lgathered}\: \: \: = \frac{1}{2 \sqrt{ \sin \: {x}^{3} } } \times \cos {x}^{3} \times \frac{d}{dx} ( {x}^{3} ) \\\end{lgathered}$$

$$\begin{lgathered}\: \: = \frac{1}{2 \sqrt{ \sin \: {x}^{3} } } \times \cos {x}^{3} \times (3 {x}^{2} ) \\\end{lgathered}$$

$$\begin{lgathered}\frac{dy}{dx} = \frac{3 {x}^{2} \cos {x}^{3} }{2 \sqrt{ \sin {x}^{3} } } \\\end{lgathered}$$

☺️☺️

Similar questions