Math, asked by digeesh869, 1 month ago

differentiate the following w.r.t. x, y=x2+3x+5/x2+2

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = \dfrac{ {x}^{2} + 3x + 5 }{ {x}^{2}  + 2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}\dfrac{ {x}^{2} + 3x + 5 }{ {x}^{2}  + 2}

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx} \frac{u}{v} \:  =  \:  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }}}}

So, on substituting the values, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{( {x}^{2} + 2)\dfrac{d}{dx}({x}^{2} + 3x + 5) - ( {x}^{2} + 3x + 5)\dfrac{d}{dx}( {x}^{2} + 2) }{ {( {x}^{2}  + 2)}^{2} }

We know,

\red{ \boxed{ \sf{ \:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}}}}

and

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}x = 1}}}

and

\red{ \boxed{ \sf{ \:\dfrac{d}{dx}k = 0}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{( {x}^{2} + 2)(2x + 3)- ( {x}^{2} + 3x + 5)(2x) }{ {( {x}^{2}  + 2)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{( {x}^{2} + 2)(2x + 3)- ( {x}^{2} + 3x + 5)(2x) }{ {( {x}^{2}  + 2)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ {2x}^{3} +  {3x}^{2} + 4x + 6 - {2x}^{3} -  {6x}^{2}  - 10x}{ {( {x}^{2}  + 2)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{  - {3x}^{2} - 6x + 6 }{ {( {x}^{2}  + 2)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{  - 3({x}^{2} + 2x - 2) }{ {( {x}^{2}  + 2)}^{2} }

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions