Math, asked by Usaidshaikh, 2 months ago

Differentiate the following w.r.tx
y =  \frac{log \: x}{x + log \: x}

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{y =  \dfrac{ log(x) }{x +  log(x) } }

 \tt{ \implies \: xy + y \:  log(x)  =  log(x)}

Differentiating both sides w.r.t x,

 \tt{ \implies \: y + x \dfrac{dy}{dx}  + y \cdot   \dfrac{1}{x} +  log(x)  \dfrac{dy}{dx} = \dfrac{1}{x} }

 \tt{ \implies \: y +   \dfrac{y}{x} +(x +   log(x) ) \dfrac{dy}{dx} = \dfrac{1}{x} }

 \tt{ \implies \: (x +   log(x) ) \dfrac{dy}{dx} = \dfrac{1}{x} - y -\dfrac{y}{x}  }

 \tt{ \implies \: (x +   log(x) ) \dfrac{dy}{dx} = \dfrac{1 - xy - y}{x}   }

 \tt{ \implies \: \dfrac{dy}{dx} = \dfrac{1 - xy - y}{x(x +   log(x))}   }

Similar questions