Physics, asked by karan23422, 10 months ago

differentiate the following with respect to x. COSCOS X/
x+sinsin x​

Answers

Answered by Anonymous
29

AnswEr :

Given Expression,

 \sf \: f(x) =  \dfrac{cos(cos \: x)}{x + sin(sin \: x)}

The above expression is of the form u/v

Derivative of u/v will be of the form :

 \sf \: f'(x) =  \dfrac{u'v - v' u}{v {}^{2} }

Now,

 \longrightarrow \:  \sf \: f'(x) =  \dfrac{d \bigg(cos(cos \: x) \bigg) \big(x + sin(sin \: x) \big) - d \bigg(x + sin(sin \: x) \bigg) \big(cos(cos \: x) \big)}{ \big(x + sin(sin \: x) \big) {}^{2} }  \\  \\  \longrightarrow \:  \sf \: f'(x)  =  \dfrac{ - sin(cos \: x) \big(x + sin(sin \: x)  \big) \dfrac{d(cos \: x)}{dx}  -  \bigg(1 + cos(sin \: x) \times  \dfrac{d(sin \: x)}{dx}  \bigg) \big(cos(cos \: x) \big)}{ \big(x + sin(sin \: x) \big) {}^{2} }  \\  \\  \longrightarrow \boxed{ \boxed{  \sf \: f'(x) =  \dfrac{sin(cos \: x).sin \: x \big(x + sin(sin \: x) \big) -  \big(1 + cos \: x.cos(sin \: x) \big) \big(cos(cos \: x) \big)}{ \big(x + sin(sin \: x) \big) {}^{2} } }}

  • Derivative of cos x is - sin x

  • Derivative of sin x is cos x
Similar questions