Math, asked by satyamshah365, 2 months ago

differentiate the following with respect to x tan-1{(1-x²)/(1+x²)}​

Answers

Answered by senboni123456
10

Step-by-step explanation:

We have,

 \sf \: y =  tan^{ - 1}  \bigg( \frac{1 -  {x}^{2} }{1 +  {x}^{2} }  \bigg)  \\

Differentiating both sides, w.r.t x, we get,

 \sf \:  \frac{dy}{dx}  =   \frac{1}{ 1 +  \bigg( \dfrac{1 -  {x}^{2} }{1 +  {x}^{2} }   \bigg) ^{2} }. \frac{d}{dx}  \bigg(  \frac{1 -  {x}^{2} }{1 +  {x}^{2} } \bigg)  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{1}{ 1 +  \dfrac{(1 -  {x}^{2} )^{2} }{(1 +  {x}^{2} )^{2} }    }.   \bigg \{  \frac{(1 +  {x}^{2}) . \frac{d}{dx} (1 -  {x}^{2})  - (1 -  {x}^{2}). \frac{d}{dx}(1 +  {x}^{2} )  }{(1 +  {x}^{2} ) ^{2} } \bigg \}  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{(1 +  {x}^{2} ) ^{2} }{  (1 +  {x}^{2}) +  (1 -  {x}^{2} )^{2}    }.   \bigg \{  \frac{(1 +  {x}^{2}) .  ( -  2x)  - (1 -  {x}^{2}). (  2x )  }{(1 +  {x}^{2} ) ^{2} } \bigg \}  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{(1 +  {x}^{2} ) ^{2} }{ 2  \{(1) ^{2}  + ( {x}^{2} )^{2} \}    }.   \bigg \{  \frac{ - 2x - 2  {x}^{3}  - 2x  + 2{x}^{3} }{(1 +  {x}^{2} ) ^{2} } \bigg \}  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{(1 +  {x}^{2} ) ^{2} }{ 2  \{(1) ^{2}  + ( {x ^{2} })^{2} \}    }.   \bigg \{  \frac{ - 2x - 2  {x}^{3}  - 2x  + 2{x}^{3} }{(1 +  {x}^{2} ) ^{2} } \bigg \}  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{(1 +  {x}^{2} ) ^{2} }{ 2  (1  + x ^{4} )   }.   \bigg \{  \frac{ - 2x   - 2x  }{(1 +  {x}^{2} ) ^{2} } \bigg \}  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{(1 +  {x}^{2} ) ^{2} }{ 2  (1  + x ^{4} )   }.   \frac{( - 4x )    }{(1 +  {x}^{2} ) ^{2} }  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{1 }{ 2  (1  + x ^{4} )   }.   \frac{( - 4x )    }{1 }  \\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{ - 4x}{ 2  (1  + x ^{4} )   }\\

 \sf \: \implies  \frac{dy}{dx}  =   \frac{ - 2x}{ 1  + x ^{4}   }\\

Similar questions