Math, asked by prasukj2005, 2 months ago

Differentiate the following with respect to x

y= e^x - 1
-------------
e ^x +1

Answers

Answered by TYKE
1

Question :

Differentiate the following with respect to x

 \sf{ y = \frac{ {e}^{x - 1} }{ {e}^{x + 1} } }

To find :

The value of y

Solution :

 \sf{ y = \frac{ {e}^{x - 1} }{ {e}^{x + 1} } }

We know that,

 \sf \frac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}

Now,

 \sf \: y =  {e}^{x - 1}  \div  {e}^{x + 1}

 \sf \: y =  {e}^{x - 1 - (x + 1)}

 \sf \: y =  {e}^{x - 1 - x - 1}

 \sf \: y =  {e}^{ - 2}

 \sf \: y =  \frac{1}{ {e}^{2} }

Final Answer :

 \ \boxed{  \sf \: so \: the \: value \: of  \: y  \: is \:  \frac{1}{ {e}^{2} } }

Answered by barani79530
0

Step-by-step explanation:

=e </p><p>x−1</p><p> ÷e </p><p>x+1</p><p> </p><p></p><p>\sf \: y = {e}^{x - 1 - (x + 1)}y=e </p><p>x−1−(x+1)</p><p> </p><p></p><p>\sf \: y = {e}^{x - 1 - x - 1}y=e </p><p>x−1−x−1</p><p> </p><p></p><p>\sf \: y = {e}^{ - 2}y=e </p><p>−2</p><p> </p><p></p><p>\sf \: y = \frac{1}{ {e}^{2} }y= </p><p>e </p><p>2</p><p> </p><p>1</p><p>	</p><p> </p><p></p><p>Final

Similar questions