Math, asked by jadhavtriveni456, 6 months ago

Differentiate the following. y=[√2+x/2-x ]×(x^2+4)​

Answers

Answered by Asterinn
7

 \bf  \implies \: y = \bigg(  \sqrt{2}  +  \dfrac{x}{2}  - x \bigg) \bigg( {x}^{2} + 4 \bigg)

We have to differentiate the above expression.

\bf  \implies \:  \dfrac{dy}{dx}  =  \dfrac{d \bigg[\bigg(  \sqrt{2}  +  \dfrac{x}{2}  - x \bigg) \bigg( {x}^{2} + 4 \bigg) \bigg]}{dx}

Now we will use product rule :-

  \boxed{\large  \sf\dfrac{d(uv)}{dx}  = u \dfrac{dv}{dx}  + v u \dfrac{du}{dx}}

\bf  \implies \:  \dfrac{dy}{dx}  =({x}^{2} + 4 ) \dfrac{d\bigg(  \sqrt{2}  +  \dfrac{x}{2}  - x \bigg)  }{dx}  + \dfrac{d  \bigg( {x}^{2} + 4 \bigg) }{dx} \bigg(\sqrt{2}  +  \dfrac{x}{2}  - x  \bigg)

We know that :-

  \boxed{\large  \sf\dfrac{d(c)}{dx}  = 0 }  \sf where \:  c \: is \: constant

\boxed{\large  \sf\dfrac{d( {x}^{n} )}{dx}  = n {x}^{n - 1}  }

\bf  \implies \:  \dfrac{dy}{dx}  =({x}^{2} + 4 )\bigg(  0  +  \dfrac{1}{2}  - 1 \bigg)   + \bigg(2 {x} + 0\bigg)  \bigg(\sqrt{2}  +  \dfrac{x}{2}  - x  \bigg)

\bf  \implies \:  \dfrac{dy}{dx}  =({x}^{2} + 4 )\bigg(     -  \dfrac{1}{2}  \bigg)   + \bigg(2 {x} \bigg)  \bigg(\sqrt{2}   -   \dfrac{x}{2}   \bigg)

\bf  \implies \:  \dfrac{dy}{dx}  =\bigg(     -  \dfrac{ {x}^{2} }{2}   -  \dfrac{4}{2} \bigg )   +  \bigg(2\sqrt{2}   -   {x} \bigg)

\bf  \implies \:  \dfrac{dy}{dx}  =     -  \dfrac{ {x}^{2} }{2}   -  {2}    + 2\sqrt{2}   -   {x}

___________________

Learn more :

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

Similar questions