Science, asked by sabuj6626, 9 months ago

Differentiate the followings with respect to x
( {sin}^{2}(x)) \times lnx

Answers

Answered by Anonymous
1

Answer:

\sf{\dfrac{ { \sin }^{2} x}{x}  +  ln(x)  \sin(2x) }

Explanation:

Given,

y =  { \sin }^{2} x  \times   ln(x)

To find the dy/dx.

We know that,

 \frac{d}{dx} mn =  m \frac{dn}{dx} + n \frac{dm}{dx}

Therefore, we get,

 =  >  \frac{dy}{dx}   =  { \sin }^{2} x \frac{d}{dx}  ln(x)  +  ln(x)  \frac{d}{dx}  { \sin}^{2} x

But, we know that,

  •  \frac{d}{dx}  ln(x)  =  \frac{1}{x}

  •  \frac{d}{dx}  { \sin }^{2}  x = 2 \sin(x)  \cos(x)  =   \sin (2x)

Therefore, we get,

 =  >  \frac{dy}{dx}  =  { \sin}^{2} x \times  \frac{1}{x}  +  ln(x)  \sin(2x)  \\  \\  =  >  \frac{dy}{dx}   =  \frac{ { \sin }^{2} x}{x}  +  ln(x)  \sin(2x)

Hence, the required value is \bold{ \dfrac{ { \sin }^{2} x}{x}  +  ln(x)  \sin(2x) }

Similar questions