Math, asked by vishnuavula, 7 months ago

Differentiate the function
 {e}^{6x } log( \tan(x) ) with respective to x.

Answers

Answered by ᎪɓhᎥⲊhҽᏦ
58

Answer:

Derivative of

  \rm \: {e}^{ 6x}  log \tan x

Here we go,

Solution :-

Let:-

  \rm y = \: {e}^{ 6x}  log \tan x

Differentiating both sides with respect to x,we get

 \rm \dfrac{dy}{dx}  =  \dfrac{d}{dx}( {e}^{6x} log \tan x)

  \rm\dfrac{dy}{dx}  =  {e}^{6x} \dfrac{d}{dx} ( log \tan x) + log \tan x. \dfrac{d}{dx} ( {e}^{6x} ) \\

\rm\dfrac{dy}{dx}  =  {e}^{6x} . \dfrac{1}{ \tan x}. \dfrac{d}{dx} ( \tan x) + log \tan x. {e}^{6x} . \frac{d}{dx} (6x)

 \rm\dfrac{dy}{dx}  =  {e}^{6x}. \dfrac{1}{ \tan x} . { \sec }^{2} x + log \tan x. {e}^{x} .6

 \rm\dfrac{dy}{dx}  =  {e}^{6x}. \dfrac{  \cancel{\cos x}}{   \sin x } .  \dfrac{1}{ {  \cos }^{ \cancel2} x} +6{e}^{x} log \tan x

 \rm\dfrac{dy}{dx}  =  {e}^{6x}  \csc x. \sec x+6{e}^{x} log \tan x

 \rm\dfrac{dy}{dx}  =  6{e}^{6x}(  log\tan x  +  \dfrac{1}{6}  \csc x. \sec x) \\

Important Derivative Formulae

\boxed{\begin{array}{c|c} \rm \:  \underline{function}& \rm \underline{Derivative}  \\ \\ \rm  \dfrac{d}{dx} ( {e}^{x} ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \ &   \rm {e}^{x}  \\  \\ \rm \:  \dfrac{d}{dx}( log x )  \:  \:  \:  \:  \:  \:  \:  \: & \rm \dfrac{1}{x}\\  \\  \rm  \dfrac{d}{dx}( \sin x )\:  \:  \:  \:  \:  \: & \rm  \cos x  \\  \\ \rm \dfrac{d}{dx}( \cos x ) \:  \:  \: & \rm  -  \sin x  \\  \\ \rm \dfrac{d}{dx}(  \tan  x ) & \rm \:  { \sec}^{2}x \\  \\ \rm \dfrac{d}{dx}(   \cot x ) &  \rm-  {  \csc }^{2}x  \\  \\ \rm \dfrac{d}{dx}(   \sec  x ) & \rm  \sec x. \tan x \\  \\\rm \dfrac{d}{dx}(   \csc x ) &  \rm \: -  \csc x. \cot x\\  \\ \rm  \dfrac{d}{dx}(x) \:  \:  \:  \:  \:  \:  \:  & 1 \end{array}}

ᎪɓhᎥⲊhҽᏦ ( Brainly.in)

Thank you :)

Similar questions