Math, asked by ariRongneme, 23 days ago

Differentiate the function
  {x}^{cosx}  + (cos {x})^{x}
please, help​

Answers

Answered by TheValkyrie
11

Answer:

\sf \dfrac{dy}{dx} =x^{cos\:x} \bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)+(cos\:x)^x\bigg(log\:cos\:x-x\:tan\:x \bigg)

Step-by-step explanation:

Given:

\sf y= x^{cos\:x}+(cos\:x)^x

To Find:

dy/dx

Solution:

Let us assume that,

\sf u=x^{cos\:x} and

\sf v=(cos\:x)^x

Hence,

\sf \dfrac{dy}{dx} =\dfrac{du}{dx} +\dfrac{dv}{dx}---(1)

Finding du/dx

We know that,

\sf u=x^{cos\:x}

Taking log on both sides we get,

\sf log\:u=log\:x^{cos\:x}

log u = cos x log x

Now differentiate on both sides with respect to x using chain rule,

\sf\dfrac{1}{u} \:\dfrac{du}{dx} =\dfrac{1}{x}\times cos\:x+log\:x\times -sin\:x

\sf \dfrac{du}{dx} =u\bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)

Substitute the value of u,

\sf \dfrac{du}{dx} =x^{cos\:x}\bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)---(2)

Now finding dv/dx

We know,

\sf v=(cos\:x)^x

Taking log on both sides,

log v = x log cos x

Differentiate on both sides w.r.t x using chain rule,

\sf \dfrac{1}{v} \: \dfrac{dv}{dx} =x\times \dfrac{1}{cos\:x} \times -sin\:x+log\:cos\:x\times 1

\sf \dfrac{1}{v} \: \dfrac{dv}{dx} =x\times  -tan\:x+log\:cos\:x

\sf \dfrac{dv}{dx} =v\bigg(log\:cosx-x\:tan\:x \bigg)

Give back the value of v,

\sf \dfrac{dv}{dx} =(cos\:x)^x\bigg(log\:cosx-x\:tan\:x \bigg)---(3)

Substitute 2 and 3 in equation 1,

\sf \dfrac{dy}{dx} =x^{cos\:x} \bigg(\dfrac{cos\:x}{x} -sin\:x\:log\:x \bigg)+(cos\:x)^x\bigg(log\:cos\:x-x\:tan\:x \bigg)


Anonymous: Fantastic !
TheValkyrie: Thank you!
Answered by FFdevansh
7

y = x  \cos(x)    +  ( \cos \\ x)

now

Attachments:
Similar questions