Math, asked by madhav5245, 6 hours ago

Differentiate the function

 |x|  \: with \: respect \: to \: x \: provided \: that \: x \ne \: 0

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: |x|

Let assume that

\rm :\longmapsto\: y = |x|

can be rewritten as

\rm :\longmapsto\: y =  \sqrt{ {x}^{2} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}y = \dfrac{d}{dx} \sqrt{ {x}^{2} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{ {x}^{2} } }\dfrac{d}{dx} {x}^{2}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \:  \:  \:  \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \:  \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{ {x}^{2} } }  \times {2x}^{2 - 1}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{x}{ |x| }  \:  \:  \green{and \: x \:  \ne \: 0}

Hence,

\bf\implies \:\boxed{\tt{ \dfrac{d}{dx} |x|  = \dfrac{x}{ |x| }  \:  \:  \green{and \: x \:  \ne \: 0}}}

OR

 \purple{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\dfrac{d}{dx} |x| =  \begin{cases} &\sf{ - 1 \:  \:  \: when \: x \:  <  \: 0} \\ \\  &\sf{ \:  \: 1 \:  \:  \:  \: when \: x \:  >  \: 0} \end{cases}\end{gathered}\end{gathered}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: |x|

Let assume that

\rm :\longmapsto\: y = |x|

can be rewritten as

\rm :\longmapsto\: y =  \sqrt{ {x}^{2} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}y = \dfrac{d}{dx} \sqrt{ {x}^{2} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{ {x}^{2} } }\dfrac{d}{dx} {x}^{2}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \:  \:  \:  \:  \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \:  \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2 \sqrt{ {x}^{2} } }  \times {2x}^{2 - 1}

\bf\implies \:\dfrac{dy}{dx} = \dfrac{x}{ |x| }  \:  \:  \green{and \: x \:  \ne \: 0}

Hence,

\bf\implies \:\boxed{\tt{ \dfrac{d}{dx} |x|  = \dfrac{x}{ |x| }  \:  \:  \green{and \: x \:  \ne \: 0}}}

OR

 \purple{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\dfrac{d}{dx} |x| =  \begin{cases} &\sf{ - 1 \:  \:  \: when \: x \:  <  \: 0} \\ \\  &\sf{ \:  \: 1 \:  \:  \:  \: when \: x \:  >  \: 0} \end{cases}\end{gathered}\end{gathered}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions