Math, asked by presto108, 1 year ago

differentiate the function w.r.t.x​

Attachments:

Answers

Answered by giprock2002
1

Answer:

\frac{1}{4\sqrt{\sqrt{x}+1}\cdot\sqrt(x)}

Step-by-step explanation:

f(x) = (x^{\frac{1}{2}}+1)^{\frac{1}{2}}

f'(x) = \frac{(\sqrt{\sqrt{x}+1})^{\frac{1}{2}-1}}{2}\cdot\frac{d(x^{\frac{1}{2}})}{dx}

f'(x) = \frac{(\sqrt{\sqrt{x}+1})^{\frac{-1}{2}}}{2}

f'(x) = \frac{1}{2\cdot\sqrt{1+\sqrt{x}}} \cdot \frac{1}{2\cdot\sqrt{x}}

f'(x) = \frac{1}{4\sqrt{\sqrt{x}+1}\sqrt{x}}


giprock2002: I added an extra sqrt sign in 2nd and 3rd line, i just saw it. cant even edit :/
Similar questions