Math, asked by kajaljes123, 5 months ago

Differentiate the function w.r.t. x if y= e^5logx + 2x​

Answers

Answered by tarracharan
1

Answer :-

\sf{\dfrac{dy}{dx} = }\boxed{\textsf{\textbf{\red{5x⁴ + 2}}}}

Given :-

\sf{y = e^{5lnx} + 2x}

To find :-

• The value of \sf{\dfrac{dy}{dx}}

Solution :-

\sf{➪\:\dfrac{dy}{dx}}\sf{=\dfrac{d}{dx}(e^{5lnx} + 2x)}

\sf{=\dfrac{d}{dx}(e^{lnx^5} + 2x)}

\sf{=\dfrac{d}{dx}(x^5 + 2x)}

\sf{=\dfrac{d}{dx}(x^5) + \dfrac{d}{dx}(2x)}

= \sf{\red{5x⁴ + 2}}

Similar questions