Differentiate the function w.r.t.x:
Answers
Answered by
0
HOPE IT HELPS U ✌️✌️✌️
Attachments:

Answered by
0
Answer:
SecxTanx + xSecxTan²x + xSec³x - Tan²x - 2xTanxSec²x
Step-by-step explanation:
xtan(x)/ (secx + Tanx)
= (xtan(x)/ (secx + Tanx) ) * (secx - Tanx)/(secx - Tanx)
= xtan(x) (secx - Tanx) /(sec²x - Tan²x)
= xtan(x) (secx - Tanx) as sec²x - Tan²x = 1
= xtan(x)secx - xtan²(x)
Let s=secx and t=tanx
⟹ds/dx=secx tanx=st
⟹dt/dx=sec²x=s²
f(x) = xst - xt²
f'(x) = st + xtds/dx + xsdt/dx - t² - 2xtdt/dx
f'(x) = st + xtst + xss² - t² - 2xts²
f'(x) = SecxTanx + xSecxTan²x + xSec³x - Tan²x - 2xTanxSec²x
Similar questions
Physics,
8 months ago
Math,
8 months ago
Math,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago