Math, asked by PragyaTbia, 1 year ago

Differentiate the function w.r.t.x. : \sin^{-1} ( \frac{1-25x^{2}} {1+25x^{2}} )

Answers

Answered by hukam0685
6

Answer:

\frac {d}{dx}sin^{-1} (\frac{1-25x^{2} }{1+25x^{2} } )=\frac{-10}{1+25x^{2} }


Step-by-step explanation:

To solve this without much difficulty we must use substitution method of integration

let 5x = tan θ

\theta= tan^{-1} 5x\\

let

y=sin^{-1} (\frac{1-25x^{2} }{1+25x^{2} } )\\\\

substitute the value of 5x

y=sin^{-1} (\frac{1-tan^{2}\theta }{1+tan^{2}\theta } )\\ \\ =sin^{2}(cos 2\theta)\\ \\ \\ since\\ \\ cos 2\theta= \frac{1-tan^{2}\theta }{1+tan^{2}\theta } \\\\ \\ and\:\: we \:\:\:\:know\:\:\: that\\ \\ cos\theta = sin(90-\theta)\\ \\

= sin^{2}[sin( \frac{\pi}{2} - 2\theta)]\\

since from yhe properties of inverse trigonometric functions

y=\frac{\pi}{2} -2\theta\\ \\

put the substituted value

y=\frac{\pi}{2} -2tan^{-1} 5x\\ \\ \frac{dy}{dx} =0-2\frac{1}{1+(5x)^{2} } .5\\ \\ \\ =\frac{-10}{1+25x^{2} }



Answered by Shubhendu8898
4

Answer:  \frac{-10}{1+25x^2}


Step-by-step explanation:

Let,

y=\sin^{-1}(\frac{1-25x^2}{1+25x^2})\\\;\\Putting\;5x=\tan\theta\implies25x^2=\tan^2\theta\\\;\\y=\sin^{-1}(\frac{1-\tan^2\theta}{1+\tan^2\theta})\\\;\\y=\sin^{-1}(\cos2\theta)\\\;\\y=\sin^{-1}(\sin(\frac{\pi}{2}-2\theta))\\\;\\y=\frac{\pi}{2}-2\theta\\\;\\y=\frac{\pi}{2}-2\tan^{-1}(5x)\\\;\\\text{Diff. both sides w.r.t. x}\\\;\\\frac{dy}{dx}=0-2\frac{1}{1+(5x)^2}.\frac{d(5x)}{dx}\\\;\\\frac{dy}{dx}=\frac{-10}{1+25x^2}

Note:-

1.\cos2\theta=\frac{1-tan^2\theta}{1+\tan^2\theta}\\\;\\2.\frac{d(\tan x)}{dx}=\frac{1}{1+x^2}

Similar questions