Math, asked by PragyaTbia, 1 year ago

Differentiate the function w.r.t.x. : \sqrt{\sin x + \sqrt{\cos x}}

Answers

Answered by abhishek111109
0
nice question another
Attachments:
Answered by hukam0685
0

Answer:

\frac{d}{dx}\sqrt{sin\:x+\sqrt{cos\:x} }= \frac{1}{2\sqrt{sin\:x+\sqrt{cos\:x} }}.(cos\:x-\frac{sin\:x}{2\sqrt{cos\:x} })

Step-by-step explanation:

As we know that, first differentiate the power,than by chain rule differentiate remaining function

y=\sqrt{sin\:x+\sqrt{cos\:x} }\\ \\ \frac{dy}{dx} =\frac{1}{2\sqrt{sin\:x+\sqrt{cos\:x} }}.\frac{d}{dx}(sin\:x+\sqrt{cos\:x} )\\ \\ \\= \frac{1}{2\sqrt{sin\:x+\sqrt{cos\:x} }}.(cos\:x+\frac{1}{2\sqrt{cos\:x} }.\frac{d\:cos\:x}{dx}) \\ \\ \\ =\frac{1}{2\sqrt{sin\:x+\sqrt{cos\:x} }}.(cos\:x+\frac{-sin\:x}{2\sqrt{cos\:x} })\\ \\ \\ = \frac{1}{2\sqrt{sin\:x+\sqrt{cos\:x} }}.(cos\:x-\frac{sin\:x}{2\sqrt{cos\:x} })

Similar questions