Math, asked by PragyaTbia, 1 year ago

Differentiate the function w.r.t.x. : (x\cos x- \sin x)^{x}

Answers

Answered by abhishek111109
0
nice question and also U try first.
Attachments:
Answered by abhi178
0
we have to differentiate the function, y=(xcosx-sinx)^x

first of all, taking ‘ log ’ both sides ,

logy=log\{xcosx-sinx)^x\}\\\\logy=xlog\{xcosx-sinx\}\\\\\frac{1}{y}\frac{dy}{dx}=\frac{d\{xlog(xcosx-sinx)\}}{dx}\\\\\frac{dy}{dx}=y\left[x\frac{d\{log(xcosx-sinx)\}}{dx}+log(xcosx-sinx)\frac{dx}{dx}\right]\\\\\frac{dy}{dx}=(xcosx-sinx)^x\left[x\frac{1}{(xcosx-sinx)}\{\frac{d(xcosx)}{dx}-\frac{d(sinx)}{dx}\}+log(xcosx-sinx)\right]\\\\\frac{dy}{dx}=(xcosx-sinx)^x\left[x\frac{(cosx-xsinx-cosx)}{(xcosx-sinx)}+log(xcosx-sinx)\right]\\\\\frac{dy}{dx}=(xcosx-sinx)^x\left[\frac{-x^2sinx}{(xcosx-sinx)}+log(xcosx-sinx)\right]
Similar questions