Math, asked by PragyaTbia, 1 year ago

Differentiate the function w.r.t.x. : x^{x}+a^{x}+x^{a}+a^{a}

Answers

Answered by abhi178
0
a is a constant term so, a^a is also a constant term. hence, differentiation of a^a = 0

y=x^x+a^x+x^a+a^a\\\\y=e^{xlogx}+e^{xloga}+x^a+a^a\\\\\textbf{differentiate both sides wrt to x}\\\\\frac{dy}{dx}=\frac{d\{e^{xlogx}\}}{dx}+\frac{d\{e^{xloga}\}}{dx}+\frac{d\{x^a\}}{dx}+\frac{d\{a^a\}}{dx}\\\\\frac{dy}{dx}=e^{xlogx}\left[x\frac{d(logx)}{dx}+logx\frac{dx}{dx}\right]+e^{xloga}\left[x\frac{d(loga)}{dx}+loga\frac{dx}{dx}\right]+ax^{(a-1)}+0\\\\\frac{dy}{dx}=x^x(1+logx)+a^x(loga)+ax^{(a-1)}
Similar questions