Differentiate the function w.r.t.x
y = (2x +3)(5x^2-7x+1 )
Answers
Given :
y = (2x + 3)( 5x² - 7x + 1)
To find :
Diffrenciation of y with respect to x , i.e., dy/dx
Identity used :
Solution :
y = (2x + 3)( 5x² - 7x + 1)
First of all we will find products on RHS
➝ y = (2x)(5x²) - (2x)(7x) + (2x)(1) + (3)(5x²) - (3)(7x) + (3)(1)
➝ y = 10x³ - 14x² + 2x + 15x² - 21x + 3
➝ y = 10x³ + 15x² - 14x² + 2x - 21x + 3
➝ y = 10x³ + x² - 19x + 3
Now we will differentiate y w.r.t. x
________________________________
ANSWER :
Diffrenciation of y w.r.t. x = 30x² + 2x - 19
Step-by-step explanation:
Given :
y = (2x + 3)( 5x² - 7x + 1)
To find :
Diffrenciation of y with respect to x , i.e., dy/dx
Identity used :
\sf \: \bullet \: \dfrac{d \: ( x^n)}{dx} \: = \: n \times \bigg( {x}^{(n - 1)} \bigg)∙
dx
d(x
n
)
=n×(x
(n−1)
)
\begin{gathered}\sf \: \bullet \: \dfrac{d \:( a)}{dx} \: = 0 \: \\ \sf \: here \: a \: is \: constant\end{gathered}
∙
dx
d(a)
=0
hereaisconstant
Solution :
y = (2x + 3)( 5x² - 7x + 1)
First of all we will find products on RHS
➝ y = (2x)(5x²) - (2x)(7x) + (2x)(1) + (3)(5x²) - (3)(7x) + (3)(1)
➝ y = 10x³ - 14x² + 2x + 15x² - 21x + 3
➝ y = 10x³ + 15x² - 14x² + 2x - 21x + 3
➝ y = 10x³ + x² - 19x + 3
Now we will differentiate y w.r.t. x
\sf \implies \: \dfrac{dy}{dx} \: = \: \dfrac{d \: ( \: 10 {x}^{3} \: + {x}^{2} - 19x + 3 \: ) }{dx}⟹
dx
dy
=
dx
d(10x
3
+x
2
−19x+3)
\sf \implies \: \dfrac{dy}{dx} \: = \: \dfrac{d \: ( \: 10 {x}^{3} \: ) \: }{dx} \: + \: \dfrac{d( {x}^{2}) }{dx} \: - \: \dfrac{d( \: 19x )\: ) }{dx} \: + \: \dfrac{d( \: 3 )\: ) }{dx}⟹
dx
dy
=
dx
d(10x
3
)
+
dx
d(x
2
)
−
dx
d(19x))
+
dx
d(3))
\sf \implies \: \dfrac{dy}{dx} \: = \: \bigg(10 \times \dfrac{d \: ( \: {x}^{3} \: ) \: }{dx} \bigg) \: + \: \dfrac{d( {x}^{2}) }{dx} \: - \: \bigg(19 \times \dfrac{d( \: x )\: }{dx} \bigg) \: + \: \dfrac{d( \: 3 )\: }{dx}⟹
dx
dy
=(10×
dx
d(x
3
)
)+
dx
d(x
2
)
−(19×
dx
d(x)
)+
dx
d(3)
\sf \implies \: \dfrac{dy}{dx} \: = \: \bigg(10 \times ( \: 3 \times {x}^{(3 - 1)} \: ) \: \bigg) \: + \bigg( 2 \times {x}^{(2 - 1) } \bigg) \: - \: \bigg(19 \times ( \: 1 \times {x}^{(1 - 1)} )\: \bigg) \: + \: 0⟹
dx
dy
=(10×(3×x
(3−1)
))+(2×x
(2−1)
)−(19×(1×x
(1−1)
))+0
\sf \implies \: \dfrac{dy}{dx} \: = \: \bigg(10 \times \: 3 \times {x}^{2} \: \: \bigg) \: + \bigg( 2 \times {x}^{1 } \bigg) \: - \: \bigg(19 \times \: 1 \times {x}^{0} \: \bigg) \:⟹
dx
dy
=(10×3×x
2
)+(2×x
1
)−(19×1×x
0
)
\sf \implies \: \dfrac{dy}{dx} \: = \: \bold{30{x}^{2} \: + 2x \: - \: 19 \: }⟹
dx
dy
=30x
2
+2x−19
________________________________
ANSWER :
Diffrenciation of y w.r.t. x = 30x² + 2x - 19