Math, asked by Anonymous, 9 months ago

Differentiate the function with respect to x
 \rm \:  \implies2 \sqrt{ \cot( {x}^{2} ) }

Answers

Answered by Asterinn
29

Given :

2 \sqrt{ \cot( {x}^{2} ) }

To find :

dy/dx

Solution :

⟹ \frac{d(2 \sqrt{ \cot( {x}^{2} ) }) }{dx}

Now differentiate using chain rule :-

d[f(g(x))]/dx = f'(g(x)) g'(x)

⟹ 2 \times \frac{d( \sqrt{ \cot( {x}^{2} ) }) }{dx}

⟹ -  2 \times \frac{1  }{2}  \times  \frac{1}{ \sqrt{cot \:  {x}^{2} } }  \times  {cosec}^{2} x \times 2x

⟹   -  \frac{1}{ \sqrt{cot \:  {x}^{2} } }  \times 2x \: {cosec}^{2}  {x}^{2}

⟹   -  \frac{2x \: {cosec}^{2}  {x}^{2} }{ \sqrt{cot \:  {x}^{2} } }

we can write :- cot x² = cos x²/ sin x²

and cosec²x² =( 1/sin²x²)

⟹   -  \frac{2x }{ {sin}^{2}  {x}^{2} \sqrt{cos {x}^{2} / sin {x}^{2} } }

⟹   -  \frac{2x }{ {sin}^{2}  {x}^{2} \sqrt{cos {x}^{2}  sin {x}^{2} } }

multiply both numerator and denominator by √2

therefore we get :-

 -  \frac{2√2x}{ sin {x}^{2}\sqrt{sin{2x}^{2} } }

Answer :-

 -  \frac{2√2x}{ sin {x}^{2}\sqrt{sin{2x}^{2} } }

( also check attachment)

__________________________

Learn more :-

  • d(sinx)/dx = cosx
  • d(cos x)/dx = -sin x
  • d(cosec x)/dx = -cot x cosec x
  • d(tan x)/dx = sec²x
  • d(sec x)/dx = secx tanx
  • d(cot x)/dx = - cosec² x

____________________

Attachments:
Answered by BrainlyIAS
27

Given

\bullet\ \; \bf 2\sqrt{cot(x^2)}

To Find

Derivative of the given value

Formula Applied

\bullet\ \; \rm \dfrac{d}{dx}(cotx)=-csc^2x\\\\\bullet\ \; \rm sin2x=2.sinx.cosx\\\\\bullet\ \; \rm \dfrac{d}{dx}(\sqrt{x})=\dfrac{1}{2\sqrt{x}}

Solution

Let ,

\bf y=2\sqrt{cot(x^2)}

Differentiating with respect to x on both sides ,

\to \rm \dfrac{dy}{dx}=\dfrac{d}{dx}(2\sqrt{cot(x^2)})\\\\\to \rm \dfrac{dy}{dx}=\dfrac{2}{2\sqrt{cot(x^2)}}.\dfrac{d}{dx}(cot(x^2))\\\\\to \rm \dfrac{dy}{dx}=\dfrac{1}{\sqrt{cot(x^2)}}(-csc(x^2))(2x)\\\\\to \rm \dfrac{dy}{dx}=\dfrac{-2x.csc^2(x^2)}{\sqrt{cot(x^2)}}\\\\\to \rm \dfrac{dy}{dx}=\dfrac{-2x}{sin^2(x^2)\sqrt{\frac{cos(x^2)}{sin(x^2)}}}\\\\\to \rm \dfrac{dy}{dx}=\dfrac{-2x}{sin(x^2)\sqrt{sin(x^2)cos(x^2)}}\\\\\to \bf \pink{\dfrac{dy}{dx}=\dfrac{-2\sqrt{2}x}{sin(x^2)\sqrt{sin(2x^2)}}\ \; \bigstar}

Similar questions