Math, asked by aryan021212, 18 days ago

Differentiate the function with respect to x using first principal

f(x) =  {xe}^{x}

Answers

Answered by mathdude500
30

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = x \:  {e}^{x} \\

So,

\rm \: f(x + h) = (x + h) \:  {e}^{x + h} \\

By using definition of First Principal, we have

\boxed{\sf{  \: \: f'(x) \:  =  \: \displaystyle\lim_{h \to 0}\sf  \:  \frac{f(x + h) - f(x)}{h} \:  \: }} \\

So, on substituting the values, we get

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{(x + h){e}^{x + h} - x{e}^{x}}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{x{e}^{x + h} + h{e}^{x + h} - x{e}^{x}}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{x({e}^{x + h} - {e}^{x}) + h{e}^{x + h}}{h}  \\

can be further rewritten as

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{x({e}^{x}{e}^{h} - {e}^{x})}{h}  + \displaystyle\lim_{h \to 0}\rm  \frac{h{e}^{x + h}}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{x{e}^{x}({e}^{h} - 1)}{h}  + \displaystyle\lim_{h \to 0}\rm  {e}^{x + h}  \\

We know,

\boxed{\sf{  \: \: \displaystyle\lim_{x \to 0}\rm  \frac{{e}^{x} - 1}{x}  = 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: x{e}^{x} \times 1 + {e}^{x + 0} \\

\rm \:  =  \: x{e}^{x}  + {e}^{x} \\

\rm \:  =  \: {e}^{x}(x + 1) \\

Hence,

 \boxed{\sf{  \:\:  \: \rm \: \dfrac{d}{dx}x \: {e}^{x}  =  \: {e}^{x}(x + 1)  \:  \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions