Math, asked by cindycindylelhchhun8, 18 days ago

differentiate the function (x-1/x)²​

Answers

Answered by kushithn1407
0

Step-by-step explanation:

We have to differentiate the given function :-

\rm y = {\bigg (x - \dfrac{1}{x} \bigg)}^{2}y=(x−

x

1

)

2

\begin{gathered}\rm \longrightarrow \dfrac{dy}{dx} = \dfrac{d{\bigg (x - \dfrac{1}{x} \bigg)}^{2} }{dx} \\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x - \dfrac{1}{x} \bigg) \times \dfrac{d{\bigg (x - \dfrac{1}{x} \bigg)} }{dx}\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x - \dfrac{1}{x} \bigg) \times \bigg ( \dfrac{d{ (x )} }{dx} - \dfrac{d{ ( \frac{1}{x} )} }{dx}\bigg)\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x - \dfrac{1}{x} \bigg) \times \bigg (1- \dfrac{d{ ( {x}^{{ - 1}} )} }{dx}\bigg)\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x - \dfrac{1}{x} \bigg) \times \bigg (1- {( - {x}^{ - 2} ) }\bigg)\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x - \dfrac{1}{x} \bigg) \times \bigg (1 + {x}^{ - 2}\bigg)\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x - \dfrac{1}{x} \bigg) \times \bigg (1 + \dfrac{1}{ {x}^{2} }\bigg)\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x + \dfrac{1}{x} - \dfrac{1}{x} -\dfrac{1}{ {x}^{3} } \bigg)\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = 2 \times \bigg(x -\dfrac{1}{ {x}^{3} } \bigg)\\ \\ \\ \rm \longrightarrow \dfrac{dy}{dx} = \dfrac{ 2{x}^{4} - 2}{ {x}^{3} } \end{gathered}

dx

dy

=

dx

d(x−

x

1

)

2

dx

dy

=2×(x−

x

1

dx

d(x−

x

1

)

dx

dy

=2×(x−

x

1

)×(

dx

d(x)

dx

d(

x

1

)

)

dx

dy

=2×(x−

x

1

)×(1−

dx

d(x

−1

)

)

dx

dy

=2×(x−

x

1

)×(1−(−x

−2

))

dx

dy

=2×(x−

x

1

)×(1+x

−2

)

dx

dy

=2×(x−

x

1

)×(1+

x

2

1

)

dx

dy

=2×(x+

x

1

x

1

x

3

1

)

dx

dy

=2×(x−

x

3

1

)

dx

dy

=

x

3

2x

4

−2

Answered by biligiri
0

f(x) = (x - 1/x)²

f' = 2(x - 1/x) × d/dx (x - 1/x) [ Chain rule ]

=> f' = 2(x - 1/x) × [1 - (- 1/x²) ]

=> f' = 2(x - 1/x)( 1 + 1/x²)

Similar questions