Math, asked by ananyasingh321vns, 5 months ago

Differentiate the function x+2/x-1

Answers

Answered by Anonymous
0

Answer:

2x/1x

2x*1x

=2x=2

x=2/2

x=1.ans.

Answered by aryan073
8

Given :

 \red \bigstar \rm \: differentiate \: the \: function :  \\   \color{orange}  \star\bf \:  \frac{x + 2}{x - 1}

________________________________________

Formula :

Using Quotient Rule:

Consider a function \rm{y=\dfrac{v}{x}}

 \\  \bullet \boxed {  \tt{ \:  \frac{dy}{dx}  =  \frac{x  \frac{d}{dv}v  - v \:  \frac{d}{dx}x }{ {x}^{2} } }}

________________________________________

Solution :

  \\  \implies \sf \:  \frac{x + 2}{x - 1} \\   \\  \bf \bullet \: differentiating \: the \: equation \: w.r.t \: to \: x \\  \\  \implies \sf \: y =  \frac{x + 2}{x - 1}  \\  \\   \\ \implies \sf \:  \frac{dy}{dx}  =  \frac{(x - 1) \frac{d}{dx} (x + 2) - (x + 2)  \frac{d}{dx} (x - 1)}{ {(x - 1)}^{2} }  \\  \\   \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{(x - 1) \times 1 - (x + 2) \times 1}{ {(x - 1)}^{2} }  \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{(x - 1) - (x + 2)}{ {(x - 1)}^{2} }  \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{(x - 1 - x - 2)}{ {(x - 1)}^{2} }  \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{ - 3}{ {(x - 1)}^{2} }  \\  \\  \\  \red \bigstar \boxed{ \sf{ \frac{x + 2}{x -1 }  =  \frac{ - 3}{ {(x - 1)}^{2} } }}

Additional information :

  \\ \bullet \tt \:  \frac{d}{dx} sinx = cosx

 \\  \bullet \tt \:  \frac{d}{dx} x = 1

  \\ \bullet \tt \:  \frac{d}{dx}  \frac{1}{x}  = lnx

  \\ \bullet \tt \:  \frac{d}{dx}  {e}^{x} =  {e}^{x}

 \\  \bullet \tt \frac{d}{dx}  {x}^{2}  = 2x

 \\  \bullet \tt \:  \frac{d}{dx}  {a}^{x}  =  {a}^{x} lna

Similar questions