Math, asked by hs2561313, 4 months ago

differentiate the function y=9/sinx+3cotx+a^x

answer me fast please​

Answers

Answered by Anonymous
3

\bold{Refer\; to\; the\; attachment\; for\; the\;  solution.}

 \bold{Hope\;it \; helps\;!}

Attachments:
Answered by mathdude500
5

\begin{gathered}\Large{\bold{\blue{\underline{Formula \:  Used \::}}}}  \end{gathered}

\rm :\implies\:\:\boxed{ \green{ \bf \: \dfrac{d}{dx}cosecx =  - cosecx \: cotx }}

\rm :\implies\:\:\boxed{ \green{ \bf \: \dfrac{d}{dx}cotx =  -  {cosec}^{2}x}}

\rm :\implies\:\:\boxed{ \green{ \bf \: \dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a)}}

\large\underline\purple{\bold{Solution :-  }}

\tt \longmapsto\:y = \dfrac{9}{sinx}  + 3cotx +  {a}^{x}

\tt \longmapsto\:y = 9cosecx + 3cotx +  {a}^{x}

On differentiating, both sides w. r. t. x, we get

\tt \longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx}( 9cosecx + 3cotx +  {a}^{x} )

\tt \longmapsto\:\dfrac{dy}{dx} = 9\dfrac{d}{dx}cosecx + 3\dfrac{d}{dx}cotx + \dfrac{d}{dx}{a}^{x}

\tt :\implies\:\dfrac{dy}{dx}=- 9cosecx \: cotx-3 {cosec}^{2}x+{a}^{x} log(a)

Similar questions