Math, asked by swanhayden7, 1 day ago

Differentiate the given function with respect to x using first principal

f(x) = (x + 3)(x - 2)

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = (x + 3)(x - 2) \\

\rm \:  =  {x}^{2} + 3x - 2x - 6 \\

\rm \:  =  {x}^{2} + x - 6 \\

So,

\rm \: f(x) =  {x}^{2} + x - 6 \\

Now,

\rm \: f(x + h) =  {(x + h)}^{2} + x + h - 6 \\

By definition of First Principal, we have

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h} \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{ {(x + h)}^{2}  + x + h - 6 - ({x}^{2}   + x - 6)}{h} \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{  {x}^{2} +  {h}^{2} + 2xh   + x + h - 6 - {x}^{2} -  x  + 6}{h} \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{{h}^{2} + 2xh + h}{h} \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{h(h + 2x + 1)}{h} \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  (h + 2x + 1) \\

\rm \:  =  \: 2x + 1 \\

Hence,

\rm\implies \:\boxed{\rm{  \: \frac{d}{dx}(x + 3)(x - 2) = 2x + 1 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions