differentiate the (o) part w.r.t x
Required Answer :-
![\bigstar \boxed{\sf\dfrac{1}{x} \bigg[ \dfrac{1}{ log_{e}a }- \dfrac{ log_{e}a }{ (log_{e}x ) ^{2} } \bigg]} \bigstar \bigstar \boxed{\sf\dfrac{1}{x} \bigg[ \dfrac{1}{ log_{e}a }- \dfrac{ log_{e}a }{ (log_{e}x ) ^{2} } \bigg]} \bigstar](https://tex.z-dn.net/?f=+%5Cbigstar+%5Cboxed%7B%5Csf%5Cdfrac%7B1%7D%7Bx%7D+%5Cbigg%5B+%5Cdfrac%7B1%7D%7B+log_%7Be%7Da+%7D-+%5Cdfrac%7B+log_%7Be%7Da+%7D%7B+%28log_%7Be%7Dx+%29+%5E%7B2%7D+%7D+%5Cbigg%5D%7D+%5Cbigstar)
Don't spam ~
Attachments:
![](https://hi-static.z-dn.net/files/d46/0684f80af9e696c9c0995966fbfa115f.jpg)
Answers
Answered by
123
Let ,
___________________________
▪To Calculate :-
___________________________
▪Formulae Used :-
___________________________
▪Solution :-
Let ,
So ,
We have ,
Differentiating both sides w.r.t x
Also ,
Differentiating both sides w.r.t x
Putting in equation {i} We Get ,
___________________________
Answered by
94
Refer to the attachment for your answer .
Used Concepts :-
- Quotient rule of differentiation which states for any two functions u and v , d/dx ( u/v ) = v × du/dx - u × dv/dx/v²
- d/dx { ln ( x ) } = 1/x
- log_x y = ln ( y )/ln ( x )
- log_x y . log_y x = 1
Attachments:
![](https://hi-static.z-dn.net/files/d1c/1541c33ca915cc2c0912da49b9343e7b.jpg)
![](https://hi-static.z-dn.net/files/dc1/b22c76dc7f7f21c618eec19aa500ec6d.jpg)
![](https://hi-static.z-dn.net/files/d5e/6155527491f05e7a69551cd15a522d2f.jpg)
Similar questions