Math, asked by AestheticSky, 6 hours ago


differentiate the (o) part w.r.t x

Required Answer :-

 \bigstar \boxed{\sf\dfrac{1}{x} \bigg[ \dfrac{1}{ log_{e}a }- \dfrac{ log_{e}a }{ (log_{e}x ) ^{2} } \bigg]} \bigstar
Don't spam ~

Attachments:

Answers

Answered by SparklingBoy
123

Let ,

\small \bf y =  log_{x}(a)  +  log_{a}(x)  +   \bigg \{log_{x}(a) . log_{a}(x)  \bigg \}

___________________________

To Calculate :-

 \bf \pink{   \dfrac{dy}{dx} }

___________________________

Formulae Used :-

 \maltese \:  \:  \:  \bf log_{n}(m) =  \dfrac{ log_{e}(m) }{ log_{e}(n) }  \\  \\  \maltese \:  \:  \:  \bf  \frac{d}{dx}  \: log \: x =  \frac{1}{x}  \\  \\  \maltese \:  \:  \:  \bf  \frac{d}{dx}  \: \{ f(x) { \}}^{n}  = n. \{f(x) \} {}^{n - 1} . \frac{d}{dx} \: f(x)

___________________________

Solution :-

 \sf\text{ y }=   log_{x}(a)  +  log_{a}(x)  +   \big\{log_{x}(a) . log_{a}(x)  \big \} \\  \\  \sf=   log_{x}(a)  +  log_{a}(x)  +   \bigg  \{   \dfrac{ log_{e}(a) }{ log_{e}(x) }  \times  \frac{ log_{e}(x) }{ log_{e}(a) }  \bigg \}

 \implies  \sf y   = log_{x}(a)  +  log_{a}(x)    + 1\\  \\   \implies \bf y =  \frac{ log_{e}(a) }{  log_{e}(x)  }  +  \frac{ log_{e}(x) }{ log_{e}(a) }  + 1

Let ,

 \sf A = \frac{ log_{e}(a) }{  log_{e}(e)  } \\  \\  \sf B =  \frac{ log_{e}(x) }{ log_{e}(a) }

So ,

 \sf \dfrac{dy}{dx}  =  \dfrac{dA}{dx}  +  \dfrac{dB}{dx}  +  \dfrac{d1}{dx}  \\  \\  \implies \sf \dfrac{dy}{dx}  =  \dfrac{dA}{dx}  +  \dfrac{dB}{dx}  + 0 \\  \\  \implies\bf \dfrac{dy}{dx}  =  \dfrac{dA}{dx}  +  \dfrac{dB}{dx}\:\:\:\:.\:.\:.\:\{i\}

We have ,

 \sf  A =  \frac{ log_{e}(a)}{ log_{e} (x)}  \\  \\  \sf A =  log_{e}(a)  \: . \:  \frac{1}{ log_{e}(x) }

Differentiating both sides w.r.t x

 \sf \dfrac{dA }{dx}  =  log_{e}(a) \:  .\:  \{ log_{e}(x)  { \}}^{ - 1}  \\  \\  \sf =  log_{e}(a)  \:.  \: ( - 1) \{{ log_{e}(x)  \}}^{ - 2} . \frac{1}{x}  \\  \\\large \purple{ \implies  \underline {\boxed{{\bf  \frac{dA}{dx}  =  -  \frac{ log_{e}(a) } {x \{ { log_{e}(x)  \}}^{2} }} }}}

Also ,

 \sf B =  \dfrac{ log_{e}(x) }{ log_{e}(a) }  \\  \\   \sf B =  \frac{1}{ log_{e}(a) }  \: . \:  log_{e}(x)

Differentiating both sides w.r.t x

  \sf\dfrac{dB}{dx}  =  \dfrac{1}{ log_{e}(a) }  \:  .\:  \dfrac{d}{dx} \:  log_{e}(x)   \\  \\ \large \purple{ \implies  \underline {\boxed{{\bf  \frac{dB}{dx}  =  \frac{1}{x( log_{e}(a) }} }}}

Putting in equation {i} We Get ,

 \sf \dfrac{dy}{dx}  =  -  \dfrac{ log_{e}(a) } {x \{ { log_{e}(x)  \}}^{2} }  \:  +  \: \dfrac{1}{x( log_{e}(a) } \\  \\ \purple{ \implies  \underline {\boxed{{\bf  \frac{dy}{dx}  = \dfrac{1}{x} \bigg[ \dfrac{1}{ log_{e}a }- \dfrac{ log_{e}a }{ (log_{e}x ) ^{2} } \bigg]} }}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
94

Refer to the attachment for your answer .

Used Concepts :-

  • Quotient rule of differentiation which states for any two functions u and v , d/dx ( u/v ) = v × du/dx - u × dv/dx/v²
  • d/dx { ln ( x ) } = 1/x
  • log_x y = ln ( y )/ln ( x )
  • log_x y . log_y x = 1

Attachments:
Similar questions