Math, asked by atulsoni888, 1 year ago

differentiate the sinlog(x^3+1)


Anonymous: Mate, Mark my Ans as brainlist if it helps you:))

Answers

Answered by Anonymous
3

Answer \:  \:  \\  \\ let \:  \:  \:  \: y =  \sin( log(x {}^{3}  + 1) )  \\  \\ Differentiate \:  \: Both \: sides \:  \: with \:  \\ respect \:  \: to \: x \: we \: have \\  \\  \frac{dy}{dx}  =  \cos( log(x {}^{3}   + 1) )  \times  \frac{1}{(x {}^{3} + 1) }  \times 3x {}^{2}  \\  \\  \frac{dy}{dx}  =  \cos( log(x {}^{3}  + 1 )  \times  \frac{3x {}^{2} }{(x {}^{3}  + 1)}  \\  \\ Note \:  \:  \:  \:  \\  \\  \: if \:  \: y = f(g(x)) \\  \\ then \:  \:  \:  \:  \frac{dy}{dx}  =  \frac{d(f(g(x))}{dx}  \times  \frac{d(g(x))}{dx}  \\ by \: chain \: rule \: of \: Differentiation.

Similar questions