Math, asked by ezhilmeenaa, 10 months ago

Differentiate the tan^-1[(√x+√a)/(1-√ax)] with respect to x.

Answers

Answered by rishu6845
22

Answer:

\boxed{\boxed{\green{\huge \bold{\dfrac{1}{2 \sqrt{x} \:  ( \: 1 + x \: )} \: }} }}

Step-by-step explanation:

\bold{Given} =  >  {tan}^{ - 1} ( \dfrac{ \sqrt{x} \:  +  \:  \sqrt{a}  }{1 \:  -  \:  \sqrt{ax} }  \: )

\bold{To \: find }\:  =  > derivative \: of \: given \: function

\bold{Concept \: used} =  > \\ \green{ 1) \tan( \alpha  +  \beta )  \:  =  \dfrac{tan \alpha  + tan \beta }{1   - tan \alpha  \: tan \beta }}

\red{2) \dfrac{d}{dx} ( {tan}^{ - 1} x) \:  =  \dfrac{1}{1 +  {x}^{2} }}

 \blue{3)\dfrac{d}{ dx } ( \sqrt{x}  \: ) =  \dfrac{1}{2 \sqrt{x} }}

\bold{Solution} =  >  \\ let \\ y =  {tan}^{ - 1} ( \:  \dfrac{ \sqrt{x}  +  \sqrt{a} }{1 -  \sqrt{ax} }  \: )

 =  > y =  {tan}^{ - 1} ( \:  \dfrac{ \sqrt{x}  +  \sqrt{a} }{1 -  \sqrt{x}  \sqrt{a} }  \: )

let \:  \: tan \alpha  =  \sqrt{x}  =  >  \alpha  =  {tan}^{ - 1} ( \sqrt{x} \:  ) \\  \:  \:  \:  \:  \:  \:  \: tan \beta  =  \sqrt{a}  =  >  \beta  =  {tan}^{ - 1} ( \sqrt{a}  \: )

 =  > y =  {tan}^{ - 1} ( \:  \dfrac{tan \alpha  + tan \beta }{1 - tan \alpha  \: tan \beta }  \: )

 =  > y =  {tan}^{ - 1} tan( \alpha   +  \beta )

 =  > y =  \alpha  \:  +  \:  \beta

 =  > y \:  =  {tan}^{ - 1}  ( \:  \sqrt{x}  \: ) \:  +  {tan}^{ - 1}  ( \: \sqrt{a}  \: )

 differentiating \: with \: respect \: to \: x

 =  >  \dfrac{dy}{dx}  =  \dfrac{d}{dx} ( \:  {tan}^{ - 1}  \sqrt{x}  \: ) \:  +  \dfrac{d}{dx}  \: (  \: {tan}^{ - 1}  \sqrt{a}  \: )

 =>\dfrac{dy}{dx}  =  \dfrac{1}{1 + ( \:  \sqrt{x}  \: ) ^{2} }  \dfrac{d}{dx} ( \:  \sqrt{x} \:  )  \: +  \:  \: 0

 =  >  \dfrac{dy}{dx}  \:  =  \dfrac{1}{1 + x} ( \:  \dfrac{1}{2 \sqrt{x} } \:  )

 =  >  \dfrac{dy}{dx}  \:  =  \dfrac{1}{2 \sqrt{x} \: ( \: 1  \:  +  \: x \: )}

Similar questions