Physics, asked by adya15, 1 month ago

Differentiate this...
ASAP !​

Attachments:

Answers

Answered by shweta7903805831
2

Topic:

Deferentiation.

Explanation:

Given:

 \bold{f(x) =  {(1 +  {x}^{2}) }^{ \frac{1}{2} }.}  \\ \\  \bold{ suppose: \: (1 +  {x}^{2}) = y.  } \\  \\   \bold{differenciate \:f(y) \: with \: respect \: to \: x}. \\  \\  \bold{ \frac{df(y)}{dx}  =  0 \times 1 {x}^{0 - 1}  + 2 \times  {x}^{2 - 1} .} \\ \\  \bold{ \implies{ \frac{df(y)}{dx}  =2x \:  -  -  -  -  - (1).}} \\  \\  \bold{and \: differenciate \:f(y) =  {(y)}^{ \frac{1}{2} }  \: with \: respect \: to \: y}. \\  \\  \bold{ \frac{df(y)}{dy}  =  \frac{1}{2} {(y)}^{ \frac{1}{2} - 1 }.} \\ \\   \bold{ \implies{\frac{df(y)}{dy}  =  \frac{1}{2} {(y)}^{ -  \frac{1}{2}  } =  \frac{1}{2 \sqrt{y} } } \:  -  -  -  -  - (2).}  \\  \\  \bold{divide \: (1) \: by\: (2).then} \\  \\  \bold{ \implies{  \frac{df(y)}{dx} \times  \frac{dy}{df(y)}  = 2x \times  \frac{1}{2 \sqrt{y} }.  }} \\  \\ \bold{ \implies{ \frac{dy}{dx}  =  \frac{x}{ \sqrt{y} } }} \\  \bold{after \: putting \: all \: values \: in \: term \: of \: x \: it \: will \: become:} \\  \\  \bold{ \frac{df(x)}{d(x)} =  \frac{x}{ \sqrt{1 +  {x}^{2} } }. }

Similar questions