Math, asked by tarangpatil09, 8 months ago

differentiate this with respect to x sec(x+y)=xy

Answers

Answered by BrainlyPopularman
7

ANSWER :

  \\ \implies \bf \dfrac{dy}{dx} =  \dfrac{ \sec(x + y). \tan(x + y)  - y }{x  -\sec(x + y). \tan(x + y)}\\

EXPLANATION :

GIVEN :

• A function sec(x + y) = xy

TO FIND :

• dy/dx = ?

SOLUTION :

  \\ \bf \implies  \sec(x + y) = xy \\

• Using property –

 \\ \bf  \:  \: \blacktriangleright \:  \:  \dfrac{d(u.v)}{dx} =u \dfrac{dv}{dx} + v \dfrac{du}{dx}  \\

 \\ \bf  \:  \: \blacktriangleright \:  \:  \dfrac{d( \sec x)}{dx} = \sec(x). \tan(x)   \\

• Now Differentiate with respect to 'x' –

  \\ \bf \implies  \sec(x + y). \tan(x + y) \left[1 +  \dfrac{dy}{dx}  \right] = x \dfrac{dy}{dx} + y  \\

  \\ \bf \implies  \sec(x + y). \tan(x + y) +\sec(x + y). \tan(x + y) \dfrac{dy}{dx}  = x \dfrac{dy}{dx} + y  \\

  \\ \bf \implies  \sec(x + y). \tan(x + y)  - y = x \dfrac{dy}{dx}  -\sec(x + y). \tan(x + y) \dfrac{dy}{dx} \\

  \\ \bf \implies  \sec(x + y). \tan(x + y)  - y = \dfrac{dy}{dx} \{x  -\sec(x + y). \tan(x + y) \} \\

  \\ \implies{ \boxed{ \bf \dfrac{dy}{dx} =  \dfrac{ \sec(x + y). \tan(x + y)  - y }{x  -\sec(x + y). \tan(x + y)}}}\\

 \\ \rule{220}{2} \\

Similar questions