Math, asked by arjun1234356, 6 months ago

Differentiate underoot sec x

Answers

Answered by Asterinn
11

 \tt \longrightarrow  \dfrac{d( \sqrt{sec \: x} )}{dx}  \\  \\ \tt \longrightarrow  \dfrac{d{(sec \: x)}^{ \dfrac{1}{2} } }{dx}  \\  \\ \tt \longrightarrow \dfrac{1}{2} \times (sec \: x)^{1 - \frac{1}{2} }  \times \dfrac{d{(sec \: x)}^{ } }{dx}  \times  \dfrac{dx}{dx}  \\  \\ \tt \longrightarrow \frac{1}{2} \times (sec \: x)^{- \dfrac{1}{2} }  {(sec \: x \times  \: tan \: x)} \\  \\ \tt \longrightarrow \frac{1}{2} \times    \dfrac{{(sec \: x \times  \: tan \: x)}}{(sec \: x)^{ \frac{1}{2} }} \\  \\ \tt \longrightarrow     \frac{{(sec \: x \times  \: tan \: x)}}{2 \: \sqrt{sec \: x} } \\  \\ \tt \longrightarrow     \frac{{(sec \: x  \:  \: tan \: x)}}{2 \: \sqrt{sec \: x} }

Learn more :

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Answered by Anonymous
21

{\bold{\sf{\underline{Answer}}}}

\: \:{\bold{\bf{\leadsto\dfrac{d(\sqrt{sec \: x})}{dx}}}}

\: \:{\bold{\bf{\leadsto \dfrac{d \: (sec \: x)\dfrac{1}{2}}{dx}}}}

\: \:{\bold{\bf{\leadsto \dfrac{1}{2} \times {(sec \: x)}^{1-  \dfrac{1}{2}} \times \dfrac{d \: sec \: x}{dx} \times \dfrac{dx}{dx}}}}

\: \:{\bold{\bf{\leadsto \dfrac{1}{2} \times \: {(sec \: x)}^{\dfrac{-1}{2}} ( sec \: x \times \: tan \: x )}}}

\: \:{\bold{\bf{\leadsto \dfrac{1}{2} \times \: \dfrac{sec \: x \times \: tan \:x}{(sec \: x)^\dfrac{1}{2}}}}}

\: \:{\bold{\bf{\leadsto \dfrac{sec \: x \times \: tan \: x}{2 \sqrt{sec \: x}}}}}

\: \:{\bold{\bf{\leadsto \dfrac{sec \: x \: tan \: x}{2 \sqrt{sec \: x}}}}}

{\bold{\sf{\underline{More \: knowledge}}}}

Trigonometric Full Table

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Trigonometric Table

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

Similar questions