Math, asked by atharvbheda, 8 months ago

Differentiate using chain rule


f(x) = sin(
 {3x}^{2}
+ x)​

Answers

Answered by BrainlyTornado
8

ANSWER:

 f'(x) =(6x+ 1) \cos({3x}^{2}+ x)

GIVEN:

f(x) = sin({3x}^{2}+ x)

TO FIND:

  • The value of f'(x).

EXPLANATION:

f(x) = sin({3x}^{2}+ x)

Differentiate w.r.t x

\dfrac{d}{dx} f(x) =  \dfrac{d}{dx} sin({3x}^{2}+ x)

\sf {\boxed{\bold{\large{\blue{\dfrac{d}{dx} f(x) = f'(x)}}}}}

\sf {\boxed{\bold{\large{\red{\dfrac{d}{dx}  \sin x=\cos x}}}}}

 f'(x) = \cos({3x}^{2}+ x) \dfrac{d}{dx} ({3x}^{2}+ x)

\sf {\boxed{\bold{\large{\orange{\dfrac{d}{dx}  {x}^{2}  = 2x}}}}}

 \sf {\boxed{\bold{\large{\pink{\dfrac{d}{dx}  x  =1}}}}}

 f'(x) = \cos({3x}^{2}+ x) (6x+ 1)  \dfrac{d}{dx} x

 f'(x) =(6x+ 1) \cos({3x}^{2}+ x)

Similar questions