Math, asked by guptaananya2005, 4 days ago

Differentiate using first principal

f(x) = cos (2x - 5)

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = cos(2x - 5)

So,

\rm :\longmapsto\:f(x + h) = cos[2(x + h) - 5] = cos(2x + 2h - 5)

By Definition of First Principal, we have

\rm :\longmapsto\:\boxed{ \tt{ \: f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \: }}

On substituting the values, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \frac{cos(2x + 2h - 5) - cos(2x - 5)}{h}

We know,

 \red{\boxed{ \tt{ \: cosx - cosy =  - 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }}}

So, on using this identity, we get

\rm =\displaystyle\lim_{h \to 0} \frac{ - 2sin\bigg[\dfrac{2x + 2h - 5 + 2x - 5}{2} \bigg]sin\bigg[\dfrac{2x + 2h - 5 - 2x + 5}{2} \bigg]}{h}

\rm =\displaystyle\lim_{h \to 0} \frac{ - 2sin\bigg[\dfrac{4x + 2h - 10}{2} \bigg]sin\bigg[\dfrac{2h }{2} \bigg]}{h}

\rm =\displaystyle\lim_{h \to 0} \frac{ - 2sin\bigg[\dfrac{4x + 2h - 10}{2} \bigg]sin\bigg[h \bigg]}{h}

\rm \:  =  \: - 2 \times \displaystyle\lim_{h \to 0}sin\bigg[\dfrac{4x + 2h - 10}{2} \bigg] \times \displaystyle\lim_{h \to 0} \frac{sinh}{h}

We know,

 \red{\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}}

So, using this identity, we get

\rm \:  =  \: - 2 \times sin\bigg[\dfrac{4x - 10}{2} \bigg] \times 1

\rm \:  =  \: - 2sin(2x - 5)

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{d}{dx}cos(2x - 5) =  - 2sin(2x - 5) \: }}}

More to know :-

 \purple{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions