Math, asked by madhav5245, 25 days ago

Differentiate using first principal
f(x) = x sinx​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

 \red{\rm :\longmapsto\:f(x) = x \: sinx}

So,

 \red{\rm :\longmapsto\:f(x + h) = (x + h) \: sin(x + h)}

Using Definition of First Principal, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}  \frac{f(x + h) - f(x)}{h}

On substituting the values, we get

\sf \:  =  \: \displaystyle\lim_{h \to 0}  \frac{(x + h)sin(x + h) - xsinx}{h}

\sf \: = \displaystyle\lim_{h \to 0}  \frac{xsin(x + h) + hsin(x + h) - xsinx}{h}

\sf \:  =  \: \displaystyle\lim_{h \to 0}  \frac{x\bigg[sin(x + h) - sinx\bigg]}{h}  +  \displaystyle\lim_{h \to 0}  \frac{hsin(x + h)}{h}

We know,

 \red{\boxed{ \rm{ \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

So, using this identity, we get

\sf \:  =  \: x\displaystyle\lim_{h \to 0} \dfrac{2cos\bigg[\dfrac{x + h + x}{2} \bigg]sin\bigg[\dfrac{x + h - x}{2} \bigg]}{h} + sinx

\sf \:  =  \: x\displaystyle\lim_{h \to 0} \dfrac{2cos\bigg[\dfrac{2x + h}{2} \bigg]sin\bigg[\dfrac{h}{2} \bigg]}{h} + sinx

\sf \:  =  \:2 x\displaystyle\lim_{h \to 0} cos\bigg[\dfrac{2x + h}{2} \bigg] \times \displaystyle\lim_{h \to 0} \dfrac{sin\bigg[\dfrac{h}{2} \bigg]}{h} + sinx

\sf \:  =  \: 2x cos\bigg[\dfrac{2x + 0}{2} \bigg] \times \displaystyle\lim_{h \to 0} \dfrac{sin\bigg[\dfrac{h}{2} \bigg]}{\dfrac{h}{2} \times 2 } + sinx

We know,

 \red{\boxed{ \rm{ \: \displaystyle\lim_{h \to 0}  \frac{sinh}{h} = 1}}}

So, using this, we get

\sf \:  =  \: 2xcosx \times \dfrac{1}{2} + sinx

\sf \:  =  \: x \: cosx \:  +  \: sinx

\bf\implies \: \red{\boxed{ \bf{ \: f'(x)  =  \: x \: cosx \:  +  \: sinx \:  \: }}}

Additional Information :-

 \red{\boxed{ \rm{ \: \displaystyle\lim_{x \to 0}  \frac{tanx}{x} = 1 \: }}}

 \red{\boxed{ \rm{ \: \displaystyle\lim_{x \to 0}  \frac{log(1 + x)}{x} = 1 \: }}}

 \red{\boxed{ \rm{ \: \displaystyle\lim_{x \to 0}  \frac{ {e}^{x}  - 1}{x} = 1 \: }}}

 \red{\boxed{ \rm{ \: \displaystyle\lim_{x \to 0}  \frac{ {a}^{x}  - 1}{x} = loga \: }}}

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by swanhayden7
0

Answer:

f'(x) = x cosx + sinx

Step-by-step explanation:

f(x) = x sinx

so,

f'(x) = x cosx + sinx × 1

f'(x) = x cosx + sinx

Similar questions