Math, asked by swanhayden7, 29 days ago

Differentiate using first principal
f(x) = log \: sinx
Don't spam.

Spammers please far away.

Its humble request​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = log \: sinx

So,

\rm :\longmapsto\:f(x + h) = log \: sin(x + h)

By definition of First Principal, we have

\rm :\longmapsto\:\boxed{ \tt{ \: f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}  \: }}

On substituting the values, we get

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{logsin(x + h) - logsinx}{h}

We know,

\boxed{ \tt{ \: logx - logy = log \frac{x}{y} \: }}

So, using this identity, we get

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{log\bigg[1 +  \dfrac{sin(x + h)}{sinx} - 1 \bigg]}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{log\bigg[1 +  \dfrac{sin(x + h) - sinx}{sinx} \bigg]}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{log\bigg[1 +  \dfrac{sin(x + h) - sinx}{sinx} \bigg]}{h\bigg[\dfrac{sin(x + h) - sinx}{sinx} \bigg]}  \times \bigg[\dfrac{sin(x + h) - sinx}{sinx} \bigg]

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ log(1 + x) }{x} = 1 \: }}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{sin(x + h) - sinx}{h \times sinx}

\rm \:  =  \:\dfrac{1}{sinx}\displaystyle\lim_{h \to 0} \frac{sin(x + h) - sinx}{h}

We know,

\boxed{ \tt{ \: sinx - siny = 2sin\bigg[\dfrac{x - y}{2} \bigg]cos\bigg[\dfrac{x + y}{2} \bigg]}}

So, using this identity, we get

\rm \:  =  \:\dfrac{1}{sinx}\displaystyle\lim_{h \to 0} \frac{2 \: cos\bigg[\dfrac{x + h + x}{2} \bigg] \: sin\bigg[\dfrac{x + h - x}{2} \bigg]}{h}

\rm \:  =  \:\dfrac{2}{sinx}\displaystyle\lim_{h \to 0} \frac{\: cos\bigg[\dfrac{2x + h}{2} \bigg] \: sin\bigg[\dfrac{h}{2} \bigg]}{h}

\rm \:  =  \:\dfrac{2}{sinx}\displaystyle\lim_{h \to 0} \frac{\: cos\bigg[\dfrac{2x + h}{2} \bigg] \: sin\bigg[\dfrac{h}{2} \bigg]}{\dfrac{h}{2}  \times 2}

\rm \:  =  \:\dfrac{1}{sinx}\displaystyle\lim_{h \to 0} \frac{\: cos\bigg[\dfrac{2x + h}{2} \bigg] \: sin\bigg[\dfrac{h}{2} \bigg]}{\dfrac{h}{2}}

We know,

\boxed{ \tt{ \: \displaystyle\lim_{h \to 0} \frac{sinh}{h} = 1 \: }}

So, using this, we get

\rm \:  =  \:\dfrac{1}{sinx}\displaystyle\lim_{h \to 0}cos\bigg[\dfrac{2x + h}{2} \bigg] \times 1

\rm \:  =  \:\dfrac{1}{sinx}  \times cosx

\rm \:  =  \:\dfrac{cosx}{sinx}

\rm \:  =  \:cotx

\bf\implies \:\boxed{ \tt{ \: \dfrac{d}{dx}log \: sinx \:  =  \: cotx \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions