Math, asked by Anonymous, 20 days ago

Differentiate using first principle method.

f(x) = ln(x)/x​

Answers

Answered by Anonymous
5

Answer:

 \sf\dfrac{1-\ln(x)}{x^2}

Step-by-step explanation:

Function we are provided to differentiate,

 \sf f(x) = \dfrac{\ln(x)}{x}

By the definition of first principles, we know that:

\boxed{\tt f'(x) = \lim\limits_{h\to0} \dfrac{f(x+h) - f(x)}{h}}

By using this we get:

{\sf \implies f'(x) = \lim\limits_{h\to0} \dfrac{\frac{\ln(x+h)}{(x+h)} - \frac{\ln(x)}{x}}{h}}

{\sf \implies f'(x) = \lim\limits_{h\to0} \dfrac{\frac{x\ln(x+h) - (x+h)\ln(x)}{x(x+h)}}{h}}

{\sf \implies f'(x) = \lim\limits_{h\to0} \dfrac{\frac{x\ln(x+h) - x\ln(x) - h\ln(x)}{x(x+h)}}{h}}

{\sf \implies f'(x) = \lim\limits_{h\to0}\dfrac{x[\ln(x+h) - \ln(x)] - h\ln(x)}{h\cdot x(x+h)}}

{\sf \implies f'(x) = \lim\limits_{h\to0}\dfrac{x[\ln(x+h) - \ln(x)]}{h\cdot x(x+h)} -\dfrac{ h\ln(x)}{h\cdot x(x+h)}}

{\sf \implies f'(x) = \lim\limits_{h\to0}\dfrac{\ln(x+h) - \ln(x)}{h(x+h)} -\dfrac{ \ln(x)}{x(x+h)}}

Now, we will use the property of logarithm,

\boxed{\tt \log(a) - \log(b) = \log\frac{a}{b}}

Using this, we get:

 {\sf \implies f'(x) = \lim\limits_{h\to0}\dfrac{\ln(\frac{x+h}{x}) }{h(x+h)} -\dfrac{ \ln(x)}{x(x+h)}}

{\sf \implies f'(x) = \lim\limits_{h\to0}\dfrac{\ln(1 + \frac{h}{x}) }{h(x+h)} -\lim\limits_{h\to0}\dfrac{ \ln(x)}{x(x+h)}}

{\sf \implies f'(x) = \lim\limits_{h\to0}\dfrac{\ln(1 + \frac{h}{x}) }{x \cdot \frac{h}{x} (x+h)} -\dfrac{ \ln(x)}{ {x}^{2} }}

{\sf \implies f'(x) = \lim\limits_{h\to0}\dfrac{\ln(1 + \frac{h}{x}) }{\frac{h}{x}}  \cdot  \dfrac{1}{x(x + h)} -\dfrac{ \ln(x)}{ {x}^{2} }}

Now apply special limit:

 \boxed{\tt\lim_{x\to0} \dfrac{\ln(1+x)}{x} = 1}

Using this, we get:

{\sf \implies f'(x) = \lim\limits_{h\to0} \dfrac{1}{x(x + h)} -\dfrac{ \ln(x)}{ {x}^{2} }}

{\sf \implies f'(x) =  \dfrac{1}{ {x}^{2} } -\dfrac{ \ln(x)}{ {x}^{2} }}

 \underline{ \underline{\sf \implies f'(x) =  \dfrac{1 -  \ln(x)}{ {x}^{2} }}}

This is the required derivative.

Similar questions