Math, asked by akumar32699, 1 year ago

Differentiate w.r.t. d tan(5x+9)/dx

Answers

Answered by MarkAsBrainliest
9

Answer :

Let, y = tan(5x + 9)

Now, differentiating with respect to x, we get

 \frac{dy}{dx} = \frac{d}{dx} tan(5x + 9) \\ \\ \implies \frac{dy}{dx} = {sec}^{2} (5x + 9) \: \frac{d}{dx} (5x + 9) \\ \\ \implies \: \frac{dy}{dx} =5 \: {sec}^{2} (5x + 9)

RULE :

\frac{d}{dx}(tanx)=sec^{2}x

#MarkAsBrainliest

Answered by saritamaithani117401
0

Answer:

  1. Let, y = tan(5x + 9)
  2. Now, differentiating with respect to x, we get
  3. \begin{gathered} \frac{dy}{dx} = \frac{d}{dx} tan(5x + 9) \\ \\ \implies \frac{dy}{dx} = {sec}^{2} (5x + 9) \: \frac{d}{dx} (5x + 9) \\ \\ \implies \: \frac{dy}{dx} =5 \: {sec}^{2} (5x + 9)\end{gathered}
  4. dx
  5. dy
  6. =
  7. dx
  8. d
  9. tan(5x+9)
  10. dx
  11. dy
  12. =sec
  13. 2
  14. (5x+9)
  15. dx
  16. d
  17. (5x+9)
  18. dx
  19. dy
  20. =5sec
  21. 2
  22. (5x+9)
  23. RULE :
  24. \frac{d}{dx}(tanx)=sec^{2}x
  25. dx
  26. d
  27. (tanx)=sec
  28. 2
  29. x
  30. #MarkAsbrainliest

Similar questions