Math, asked by raunak1545, 1 month ago

differentiate w.r.t. of x tan (sin^-1 x^4)

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:tan\bigg( {sin}^{ - 1}   {x}^{4} \bigg)

Let we assume that

\rm :\longmapsto\:y \:  =  \: tan\bigg( {sin}^{ - 1}   {x}^{4} \bigg)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  = \dfrac{d}{dx} \: tan\bigg( {sin}^{ - 1}   {x}^{4} \bigg)

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  {sec}^{2} \bigg( {sin}^{ - 1}   {x}^{4} \bigg)\dfrac{d}{dx}\bigg( {sin}^{ - 1} {x}^{4}  \bigg)

We know

\boxed{ \bf{ \: \dfrac{d}{dx} {sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  {sec}^{2} \bigg( {sin}^{ - 1}   {x}^{4} \bigg) \times \dfrac{1}{ \sqrt{1 -  {( {x}^{4} )}^{2} } }\dfrac{d}{dx} {x}^{4}

We know,

\boxed{ \bf{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =    \dfrac{{sec}^{2} \bigg( {sin}^{ - 1}   {x}^{4} \bigg)}{ \sqrt{1 -  {x}^{8} } } \times  {4x}^{4 - 1}

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =    \dfrac{{sec}^{2} \bigg( {sin}^{ - 1}   {x}^{4} \bigg)}{ \sqrt{1 -  {x}^{8} } } \times  {4x}^{3}

\bf :\longmapsto\:\dfrac{dy}{dx} \:  =    \dfrac{ {4x}^{3}  \: {sec}^{2} \bigg( {sin}^{ - 1}   {x}^{4} \bigg)}{ \sqrt{1 -  {x}^{8} } }

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions