Math, asked by urvashiteli179, 6 months ago

differentiate w.r.t x. 1) y=e tan-1x , 2) y=sin 5x+२​

Answers

Answered by aryan073
4

Given:

 \red \bigstar \sf \: differentiate \: with \: respect \: to \: x :

  \\ \bf \: (1) \: y =  {e}^{ {tan}^{ - 1} x} \:  \:  \:  \:  \:  \:  \: (2)y = sin(5x + 2)

________________________________________

To find :

 \\  \red \bigstar \rm \:  \frac{dy}{dx}=?

________________________________________

Solution :

 \\  \pink \bigstar \sf \: (1) \: y =  {e}^{ {tan}^{ - 1}x }

 \implies \sf \:  y =  {e}^{ {tan}^{ - 1} x}  \\  \\  \underline{ \bf{ \bullet \: differentating \: both \: side \: wrt \: x}} \\  \\  \implies \sf \:  \frac{dy}{dx}  =  {e}^{ {tan}^{ - 1}x }  \times  \frac{1}{1 +  {x}^{2} }  \\  \\   \\  \implies \boxed { \sf{ \frac{dy}{dx}  =  {e}^{ {tan}^{ - 1}x}  \times  \frac{1}{1 +  {x}^{2} } }}

________________________________________

 \pink \bigstar \sf \: y = sin(5x + 2)

  \\ \implies \sf \: y = sin(5x + 2) \\  \\  \underline{ \bf{ \bullet \: differentating \: both \: side \: wrt \: x}} \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} sin(5x + 2) \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  = cos(5x + 2) \times 5 \\  \\  \\  \implies \boxed{ \sf{ \frac{dy}{dx}  = 5cos(5x + 2)}}

________________________________________

Additional information :

(1) This differential equations can be also solve by first principle of differentiation :

\bullet\boxed{\sf{lim_{x \to 0} \: \dfrac{f(x+h)-f(x)}{h}}}

(2) This type of equation can be easily solve by using chain rule :

Ex:

 \bf{\bullet \frac{d}{dx} sin5x =  cos5x \times 5 = 5cos5x}

Similar questions