Math, asked by abhinavpowroju, 7 months ago

Differentiate w.r.t x

Attachments:

Answers

Answered by rocky200216
9

f'(x) = -1 .

Explanation is above on the pic.

Hope it helps to you.

Attachments:
Answered by BrainlyPopularman
7

Question :

 \\ { \bold{Differentiate \:  \: w.r.t \:  \: x \:  \:  :  \: { \cos}^{ - 1}  \left( \dfrac{ \sin(x) +  \cos(x)  }{  \sqrt{2}  }  \right)}} \\

ANSWER :

Let the function be –

 \\ \implies { \bold{y \:  =   \: { \cos}^{ - 1}  \left( \dfrac{ \sin(x) +  \cos(x)  }{  \sqrt{2}  }  \right)}} \\

 \\ \implies { \bold{y \:  =   \: { \cos}^{ - 1}  \left( \dfrac{ \sin(x)   }{  \sqrt{2}  }  +  \frac{ \cos(x) }{ \sqrt{2} }  \right)}} \\

• We know that –

 \\  \longrightarrow \:  \: \large { \green { \boxed  { \bold{ \sin( \dfrac{\pi}{4} ) =  \cos( \dfrac{\pi}{4} )  =  \frac{1}{ \sqrt{2} }  }}}} \\

• So that –

 \\ \implies { \bold{y \:  =   \: { \cos}^{ - 1}  \left[  \sin( \dfrac{\pi}{4} ) { \sin(x)   }  +   \cos( \dfrac{\pi}{4} ) { \cos(x) }  \right]}} \\

• Now using identity –

 \\  \large \star \:  \: { \green{ \boxed{ \bold{  \cos(a - b)  =  \sin( a) { \sin(b)   }  +   \cos( a ) {  \cos(b)  }   }}}} \\

 \\  \implies{ \bold{y \:  =   \: { \cos}^{ - 1}  \left[   \cos( \dfrac{\pi}{4} - x ) \right]}} \\

• According to another condition –

 \\   \implies{ \bold{ - \dfrac{\pi}{4}   < x <  \dfrac{\pi}{4} }} \\

 \\   \implies{ \bold{ \dfrac{\pi}{4} + (  - \dfrac{\pi}{4})   < (\dfrac{\pi}{4}  -  x) <  \dfrac{\pi}{4}  +  \dfrac{\pi}{4} }} \\

 \\   \implies{ \bold{ 0 < (\dfrac{\pi}{4}  -  x) <  \dfrac{\pi}{2} }} \\

 \\   \implies{ \bold{ ( \dfrac{\pi}{4}  -  x)  \in (0, \frac{\pi}{2}) }} \\

   \\ \:  \because  \: { \bold{ ( \dfrac{\pi}{4}  -  x) \:  \:  belongs \:  \: in \:  \: principal \:  \: value . }} \\

   \\   \:  \therefore  \: { \bold{ we \:  \: should  \: \: write \: \: this \: \: as -}} \\

 \\  \implies{ \bold{y \:  =  ( \dfrac{\pi}{4} - x ) }} \\

• Now Differentiate with respect to 'x'

 \\  \large \implies{ \red{ \boxed{ \bold{ \dfrac{dy}{dx}  \:  =   - 1}}}} \\

 \\ \rule{220}{2} \\

Similar questions