Differentiate W.r.t x log(cos5x)
Answers
Answered by
4
-5sin5x/cos5x =-5tan5x is your answer
Hope it helps you.
Dear!
Hope it helps you.
Dear!
Answered by
14
y= log (cos 5x)
on diff. both side w.r.t x
dy/dx= d/dx(log(cos5x))
=1/cos5x {d/dx(cos 5x)}. (d/dx logx=1/x)
=1/cos5x{(-sin5x).d/dx(5x)}. (d/dxcosx=
-sinx)
=1/cos5x{(-sin5x).5}. (d/dx 5x=5)
=1/cox5x(-5sin5x).
= -5sin5x/cos5x
dy/dx = -5tan 5x. (tanx=sinx/cosx)
hope this help u:)
on diff. both side w.r.t x
dy/dx= d/dx(log(cos5x))
=1/cos5x {d/dx(cos 5x)}. (d/dx logx=1/x)
=1/cos5x{(-sin5x).d/dx(5x)}. (d/dxcosx=
-sinx)
=1/cos5x{(-sin5x).5}. (d/dx 5x=5)
=1/cox5x(-5sin5x).
= -5sin5x/cos5x
dy/dx = -5tan 5x. (tanx=sinx/cosx)
hope this help u:)
Similar questions