Math, asked by Kirti240404, 1 month ago

differentiate w.r.t. x
please help me asap​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:y =  {cot}^{ - 1}\bigg(\dfrac{cosx}{1 + sinx}  \bigg)

We know,

\boxed{ \rm{ cosx = sin\bigg(\dfrac{\pi}{2}   - x\bigg) }}

and

\boxed{ \rm{ sinx = cos\bigg(\dfrac{\pi}{2}   - x\bigg) }}

So, using these Identities, the given function reduces to

\rm :\longmapsto\:y =  {cot}^{ - 1}\bigg(\dfrac{sin\bigg(\dfrac{\pi}{2}   - x\bigg)}{1 + cos\bigg(\dfrac{\pi}{2}   - x\bigg)}  \bigg)

Let we assume that

\red{\rm :\longmapsto\:\bigg(\dfrac{\pi}{2}   - x\bigg) = 2z}

So, above function can be rewritten as

\rm :\longmapsto\:y =  {cot}^{ - 1}\bigg(\dfrac{sin2z}{1 + cos2z}  \bigg)

We know,

\boxed{ \rm{ sin2z = 2sinzcosz}}

and

\boxed{ \rm{ 1 + cos2z =  {2cos}^{2}z}}

So, using these Identities, we get

\rm :\longmapsto\:y =  {cot}^{ - 1}\bigg(\dfrac{2sinz \: cosz}{ {2cos}^{2} z}  \bigg)

\rm :\longmapsto\:y =  {cot}^{ - 1}\bigg(\dfrac{sinz}{ {cos}z}  \bigg)

\rm :\longmapsto\:y =  {cot}^{ - 1}\bigg(tanz \bigg)

\rm :\longmapsto\:y =  \dfrac{\pi}{2} -  {tan}^{ - 1}\bigg(tanz \bigg)

\rm :\longmapsto\:y =  \dfrac{\pi}{2} -  z

On substituting the value of z, we get

\rm :\longmapsto\:y =  \dfrac{\pi}{2} -  \bigg(\dfrac{\pi}{4}   - \dfrac{x}{2} \bigg)

\rm :\longmapsto\:y =  \dfrac{\pi}{2} -  \dfrac{\pi}{4}    +  \dfrac{x}{2}

\rm :\longmapsto\:y =  \dfrac{\pi}{4}  +  \dfrac{x}{2}

Now, on differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y = \dfrac{d}{dx} \dfrac{\pi}{4}  +  \dfrac{d}{dx}\dfrac{x}{2}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2}

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }}

\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}

\boxed{ \rm{ \dfrac{d}{dx}cosx =  -  \: sinx}}

\boxed{ \rm{ \dfrac{d}{dx}tanx \:  =  \:  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx \:  = -   \:  {cosec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cosecx \:  =  \:  -  \: cosecx \: cotx}}

\boxed{ \rm{ \dfrac{d}{dx}secx \:  =  \:  \: secx \: tanx}}

Similar questions