Math, asked by snehasristi1298, 9 months ago

differentiate w. r.t x: sin^2 (x^5)​

Answers

Answered by hipsterizedoll410
1

Answer: 10x⁴cosx⁵.sinx⁵

To find:

\sf \dfrac{d}{dx}sin^2(x^5)

Formula used:

\boxed{\sf Chain\:rule: \dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}}

\boxed{\sf Power\:rule:(x^n)=nx^{n-1}}

Explanation:

\sf Let\\

\sf y=sin^2(x^5)

\sf u=x^5

\sf \therefore y=sin^2 u

\sf Hence,\:\dfrac{du}{dx}=5x^{5-1}=5x^4

\sf and\:\dfrac{dy}{du}=sin^2u

\sf Again\:using\:chain\:rule\:to\:differentiate\:sin^2u,we\:get:

\sf \therefore\dfrac{d}{du}sin^2u=2\:sinu.cosu

\sf Substituting\:the\:value\:of\:u,we\:get:

\sf \dfrac{dy}{dx}=2\:sinx^5.cosx^5.5x^4

     \sf =\boxed{\sf10x^4cosx^5.sinx^5}

Similar questions