Math, asked by rohanmonde02, 2 months ago

Differentiate w.r.t.x: (sin x)^x+x^sinx​

Answers

Answered by amansharma264
6

EXPLANATION.

\sf \implies (sin x)^{x} \ + (x)^{sin x}.

As we know that,

(sin x)ˣ = u

(x)^(sin x) = v.

y = u + v.

\sf \implies u = (sin x)^{x}

Taking ㏒ on both sides, we get.

\sf \implies log(u) = log (sinx)^{x}

\sf \implies log(u) = x \ log(sinx)

\sf \implies \dfrac{1}{u} \times \dfrac{du}{dx} = \dfrac{d(x \ log(sinx))}{dx}

\sf \implies \dfrac{1}{u} \times \dfrac{du}{dx} = (x)  \times  \dfrac{d[log(sinx)]}{dx} \ + log(sinx) \times \dfrac{d(x)}{dx}

\sf \implies \dfrac{1}{u} \times \dfrac{du}{dx} = (x) \times \dfrac{1}{sinx} \times \dfrac{d(sinx)}{dx} \ + log(sin x) \times 1

\sf \implies \dfrac{1}{u} \times \dfrac{du}{dx} = (x) \times \dfrac{1}{sinx} \times cosx \ + log(sinx)

\sf \implies \dfrac{1}{u} \times \dfrac{du}{dx} = \bigg[(x)cotx \ + log(sinx)\bigg]

\sf \implies \dfrac{du}{dx} = u \bigg[ (x)cotx \ + log(sinx) \bigg]

\sf \implies  \dfrac{du}{dx} = (sinx)^{x} \bigg[ (x)cotx \ + log(sinx) \bigg].

\sf \implies v = (x)^{sinx)}

Taking ㏒ on both sides, we get.

\sf \implies log(v) = log(x)^{sinx}

\sf \implies log(v) = sinx \ log(x).

\sf \implies \dfrac{1}{v} \times \dfrac{dv}{dx}  =\dfrac{d[sinx \ log(x)]}{dx}

\sf \implies \dfrac{1}{v} \times \dfrac{dv}{dx}  = (sinx) \times \dfrac{d[log(x)]}{dx} \ + log(x) \times \dfrac{d(sinx)}{dx}

\sf \implies \dfrac{1}{v} \times \dfrac{dv}{dx}  = sinx \times \dfrac{1}{x}  \ + log(x) cosx

\sf \implies \dfrac{1}{v} \times \dfrac{dv}{dx}  = \bigg[\dfrac{sinx}{x} \ + log(x)cos(x)\bigg]

\sf \implies  \dfrac{dv}{dx} = v \bigg[ \dfrac{sinx}{x} \ + log(x)cos(x) \bigg]

\sf \implies  \dfrac{dv}{dx}  = (x)^{sinx}\bigg[\dfrac{sinx}{x}  \ + log(x)cos(x) \bigg]

\sf \implies \dfrac{dy}{dx} = \dfrac{du}{dx} \times \dfrac{dv}{dx}

\sf \implies \dfrac{dy}{dx} = (sinx)^{x} \bigg[(x)cotx \ + log(sinx) \bigg] \ + (x)^{sinx} \bigg[ \dfrac{sinx}{x} \ + log(x)cos(x) \bigg].


Anonymous: Ãwēsømê
amansharma264: Thanku
Similar questions