Physics, asked by sonii9, 11 months ago

differentiate w.r.t. x.
 {( log_{e}x) }^{2}

Answers

Answered by WizarD18
1

Answer:

Let,

y =  {( log_{e}x) }^{2}

:

 \frac{dy}{dx}  =  \frac{d}{dx}  { (log_{}x) }^{2}

 =  > 2logx \:  \frac{d}{dx} (logx)

 =  > 2logx. \frac{1}{x}  =  \frac{2}{x} logx

_________________

Answered by Shubhendu8898
2

Answer: \frac{2\log_2x}{x}

Explanation:

Given,

y=(\log_ex)^2

\text{Let}\;\;\log_ex=t\\\;\\\text{Diffrentiating it with respect to x}\\\\\;\frac{d\log_ex}{dx}=\frac{dt}{dx}\\\;\\\frac{1}{x}=\frac{dt}{dx}\\\;\\\frac{dt}{dx}=\frac{1}{x}

Now,

y=t^2\\\;\\\text{Differentiating it with respect to x}\\\;\\\frac{dy}{dx}=2t.\frac{dt}{dx}\\\;\\\frac{dy}{dx}=2\times\log_ex\times\frac{1}{x}\\\;\\\frac{dy}{dx}=\frac{2\log_ex}{x}

 \textbf{Note}:-\\\;\\1)\;\;\frac{d\log_ex}{dx}=\frac{1}{x}\\\;\\2)\;\;\frac{dx^n}{dx}=nx^{n-1}\\\;\\3)\;\;\text{If}\;\;y=f_1(u)\;,u=f_2(v)\;\;\text{and}\;,v=f_3(x)\\\;\\\implies\frac{du}{dx}=\frac{du}{dv}.\frac{dv}{dx}\\\;\\\implies\frac{dy}{dx}=\frac{dy}{du}.\frac{du}{dv}.\frac{dv}{dx}

Similar questions